分析 假设生产卫兵x个,生产骑兵y个,则生产伞兵(100-x-y)个,于是利润为z=5x+6y+3(100-x-y)=2x+3y+300.利用生产时间和生产个数限制列出约束条件,作出平面区域,根据线性规划知识求出最优解.
解答 解:假设生产卫兵x个,生产骑兵y个,则生产伞兵(100-x-y)个.
则$\left\{\begin{array}{l}{5x+7y+4(100-x-y)≤600}\\{0≤x≤100}\\{0≤y≤100}\\{0≤100-x-y≤100}\\{x,y,z∈N}\end{array}\right.$,即$\left\{\begin{array}{l}{x+3y≤200}\\{0≤x≤100}\\{0≤y≤100}\\{0≤x+y≤100}\end{array}\right.$.
作出平面区域如图所示:![]()
设每天的利润为z,则z=5x+6y+3(100-x-y)=2x+3y+300.
∴y=-$\frac{2}{3}x$-100+$\frac{z}{3}$.
由平面区域可知当直线y=-$\frac{2}{3}x$-100+$\frac{z}{3}$经过点B时,截距最大,即z最大.
联立方程组$\left\{\begin{array}{l}{x+y=100}\\{x+3y=200}\end{array}\right.$,解得x=y=50.
∴当x=y=50时,z取得最大值2×50+3×50+300=550.
答:每天生产卫兵50个,骑兵50个,伞兵0个时,利润最大,最大利润为550元.
点评 本题考查了简单线性规划的应用,列出约束条件,得出目标函数是解题的关键,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1] | B. | [0,1) | C. | [-3,2) | D. | (-3,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1} | B. | {3,5} | C. | {1,2,4,6} | D. | {1,2,3,4,5} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com