精英家教网 > 高中数学 > 题目详情
18.如果抛物线y2=8x上的点M到y轴的距离是3,那么点M到该抛物线焦点F的距离是5.

分析 利用抛物线的定义将P到该抛物线焦点转化为它到准线的距离即可求得答案.

解答 解:∵抛物线的方程为y2=8x,设其焦点为F,
∴其准线l的方程为:x=-2,
设点P(x0,y0)到其准线的距离为d,则d=|PF|,
即|PF|=d=x0-(-2)=x0+2
∵点P到y轴的距离是3,
∴x0=3
∴|PF|=3+2=5.
故答案为:5.

点评 本题考查抛物线的简单性质,考查转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.等差数列{an}的前n项和为Sn,Sm-1=-5,Sm=0,Sm+1=7,则m=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知定义在R上的函数f(x)满足(x+6)+f(x)=0,函数y=f(x-1)关于点(1,0)对称,则f(2016)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设a,b,c为正实数,且满足a-3b+2c=0,则$\frac{{b}^{2}}{ac}$的最小值是$\frac{8}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5min,生产一个骑兵需7min,生产一个伞兵需4min,已知总生产时间不超过10h,若生产一个卫兵可利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元,怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若集合A={x|3x<1},B={x|0≤x≤1},则(∁RA)∩B=(  )
A.(0,1)B.[0,1)C.(0,1]D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知|$\overrightarrow{AB}$|=1,|$\overrightarrow{AC}$|=$\sqrt{5}$,|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|,则$\frac{\overrightarrow{AB}•\overrightarrow{BC}}{|\overrightarrow{BC}|}$=(  )
A.$\frac{\sqrt{6}}{6}$B.-$\frac{\sqrt{6}}{6}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知复数z=$\frac{10}{3+i}$-2i,其中i是虚数单位,则|z|等于$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)=x3+3x2+1,已知a≠0,且f(x)-f(a)=(x-b)(x-a)2,x∈R,则实数a=-2,b=1.

查看答案和解析>>

同步练习册答案