精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
2
sin2x-cos2x-
1
2
(x∈R).
(Ⅰ)求函数f(x)的最小值和最小正周期;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c,且c=
3
,C=
π
3
,sinB-2sinA=0,求a、b.
考点:三角函数中的恒等变换应用,余弦定理
专题:三角函数的图像与性质
分析:(Ⅰ)利用二倍角公式和两角和公式对函数解析式化简整理,继而根据三角函数的性质求得其最小值和最小正周期.
(Ⅱ)根据正弦定理和已知等式求得a和b的关系,进而利用余弦定理求得a,则b可求.
解答: 解:f(x)=
3
2
sin2x-cos2x-
1
2
=
3
2
sin2x-
1+cos2x
2
-
1
2
=sin(2x-
π
6
)-1,
(Ⅰ)∴f(x)的最小值为-2,最小正周期T=
2

(Ⅱ)∵sinB-2sinA=0,
∴b=2a,
由余弦定理得:c2=a2+b2-2abcosC,
即(
3
2=a2+(2a)2-4a2cos
π
3

∴a=1或-1(舍去),
∴b=2.
点评:本题主要考查了三角函数恒等变换的应用.要求学生对诸如二倍角公式,两角和公式三角函数性质和图象等知识能熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an},满足
a
2
n+1
-an+1an-2
a
2
n
=0
(n∈N*),且a1=2.
(1)求数列{an}的通项公式;
(2)设bn=an•log
1
2
an
,若bn的前n项和为Sn,求Sn
(3)在(2)的条件下,求使Sn+n•2n+1>50成立的正整数n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-(a+2)x+alnx.其中常数a>0
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)设定义在D上的函数y=h(x)在点P(x0,h(x0))处的切线l的方程为y=g(x),当x≠x0时,若
h(x)-g(x)
x-x0
>0在D内恒成立,则称P为y=h(x)的“类对称点”,当a=4时,试问y=f(x)是否存在“类对称点”?若存在,请至少求出一个“类对称点”的横坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=CB=CC1=2,E是AB中点.
(Ⅰ)求证:AB1⊥平面A1CE;
(Ⅱ)求直线A1C1与平面A1CE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn为数列{an}的前n项和,且有a1=1,Sn+1=an+1(n∈N*).
(Ⅰ) 求数列{an}的通项an
(Ⅱ) 若bn=
n
4an
,求数列{bn}的前n项和Tn
(Ⅲ)是否存在最小正整数m,使得不等式
n
k=1
k+2
Sk•(Tk+k+1)
<m
对任意正整数n恒成立,若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司“咨询热线”电话共有10路外线,经长期统计发现,在8点至10点这段时间内,外线电话同时打入情况如表所示:
电话同时打入数ξ 0 1 2 3 4 5 6 7 8 9 10
概率P 0.13 0.35 0.27 0.14 0.08 0.02 0.01 0 0 0 0
(1)若这段时间内,公司只安排了2位接线员(一个接线员一次只能接一个电话).
①求至少一路电话不能一次接通的概率;
②在一周五个工作日中,如果有三个工作日的这一时间内至少一路电话不能一次接通,那么公司的形象将受到损害,现用至少一路电话一次不能接通的概率表示公司形象的“损害度”,求这种情况下公司形象的“损害度”;
(2)求一周五个工作日的这一时间内,同时打入的电话数ξ的期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}中,S5=4,S10=12,则S15=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=sin(2x+
π
6
)在x=
π
12
处切线的斜率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
x,x∈(-∞,a)
x2,x∈[a,+∞)
,若f(2)=4,则a的取值范围为
 

查看答案和解析>>

同步练习册答案