精英家教网 > 高中数学 > 题目详情
已知Sn为数列{an}的前n项和,且有a1=1,Sn+1=an+1(n∈N*).
(Ⅰ) 求数列{an}的通项an
(Ⅱ) 若bn=
n
4an
,求数列{bn}的前n项和Tn
(Ⅲ)是否存在最小正整数m,使得不等式
n
k=1
k+2
Sk•(Tk+k+1)
<m
对任意正整数n恒成立,若存在,求出m的值;若不存在,说明理由.
考点:数列与不等式的综合
专题:圆锥曲线中的最值与范围问题
分析:(Ⅰ) 当n=1时,求出a2=2,当n≥2时,求得an+1=2an,由此推导出{an}是首项为1,公比为2的等比数列,从而能求出an=2n-1
(Ⅱ) 由bn=
n
4an
=
n
4•2n-1
=
n
2n+1
,利用错位相减法能求出数列{bn}的前n项和Tn
(Ⅲ)由
k+2
Sk•(Tn+k+1)
=2(
1
2k-1
-
1
2k+1-1
),能求出
n
k=1
k+2
Sk•(Tk+k+1)
=2(1-
1
2n+1-1
)<2,由此推导出存在最小正整数m=2,使不等式
n
k=1
k+2
Sk•(Tk+k+1)
<m
对任意正整数n恒成立.
解答: 解:(Ⅰ) 当n=1时,a2=S1+1=a1+1=2,…(1分)
当n≥2时,Sn+1=an+1,Sn-1+1=an
两式相减得an+1=2an,…(2分)
又a2=2a1,∴{an}是首项为1,公比为2的等比数列,
an=2n-1.…(4分)
(Ⅱ) 由(Ⅰ) 知an=2n-1
bn=
n
4an
=
n
4•2n-1
=
n
2n+1

Tn=
1
22
+
2
23
+
3
24
+…+
n
2n+1

1
2
Tn=
1
23
+
2
24
+…+
n-1
2n+1
+
n
2n+2

两式相减得
1
2
Tn=
1
22
+
1
23
+
1
24
+…+
1
2n+1
-
n
2n+2

=
1
22
(1-
1
2n
)
1-
1
2
-
n
2n+2

=
1
2
-
n+2
2n+2

Tn=1-
n+2
2n+1
.…(8分)
(Ⅲ)∵
k+2
Sk•(Tn+k+1)
=
k+2
(2k-1)•(1-
k+2
2k+1
+k+1)

=
1
(2k-1)•(1-
1
2k+1
)

=
2k+1
(2k-1)•(2k+1-1)

=2(
1
2k-1
-
1
2k+1-1
),…(11分)
n
k=1
k+2
Sk•(Tk+k+1)
=
n
k=1
2(
1
2k-1
-
1
2k+1-1
)

=2(1-
1
2n+1-1
)<2,
若不等式
n
k=1
k+2
(Tk+k+1)
<m
对任意正整数n恒成立,则m≥2,
∴存在最小正整数m=2,
使不等式
n
k=1
k+2
Sk•(Tk+k+1)
<m
对任意正整数n恒成立.…(14分)
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,考查满足条件的实数是否存在的判断与求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,我国某搜救舰艇以30(海里/小时)的速度在南海某区域搜索,在点A处测得基地P在南偏东60°,向北航行40分钟后到达点B,测得基地P在南偏东30°,并发现在北偏东60°的航向上有疑似马航飘浮物,搜救舰艇立即转向直线前往,再航行80分钟到达飘浮物C处,求此时P、C间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集为U=R,集合A=(-∞,-3]∪[6,+∞),B={x|-2<x<8}.
(1)求如图阴影部分表示的集合;
(2)已知非空集合C={x|x>2a且x<a+1},若C⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l:y=x+a(a≠0)和曲线C:y=x3-x2+1相切,求a的值及切点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知△ABC与△BCD所在平面互相垂直,且∠BAC=∠BCD=90°,AB=AC,CB=CD,点P,Q分别在线段BD,CD上,沿直线PQ将△PQD向上翻折,使D与A重合.
(Ⅰ)求证:AB⊥CQ;
(Ⅱ)求直线AP与平面ACQ所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
2
sin2x-cos2x-
1
2
(x∈R).
(Ⅰ)求函数f(x)的最小值和最小正周期;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c,且c=
3
,C=
π
3
,sinB-2sinA=0,求a、b.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.
(1)求证DM∥平面APC; 
(2)求证平面ABC⊥平面APC;
(3)若BC=PC=4,求二面角P-AB-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面上定点O,A,B,向量
a
=
OA
b
=
OB
,且|
a
|=2,|
b
|=1,|
a
+
b
|=
7
,点C是平面上的动点,记
c
=
OC
,若(
a
-2
c
)•(
b
-
c
)=0,给出以下命题:
①|
a
-
b
|=
3

②点C的轨迹是一个圆;
③|
AC
|的最大值为
7+1
2
,最小值为
7-1
2

④|
BC
|的最大值为
3
+1
2
,最小值为
3
-1
2

其中正确的有
 
(填上你认为正确的所有命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z=1+i(i为虚数单位),
.
z
是z的共轭复数,则z2-
.
z
2的虚部为
 

查看答案和解析>>

同步练习册答案