精英家教网 > 高中数学 > 题目详情
15.已知x3+y3=27,x2-xy+y2=9,求x+y与x2+y2的值.

分析 利用乘法公式可得:x3+y3=(x+y)(x2-xy+y2)=27,与联立x2-xy+y2=9,可得x+y=3,两边平方可得x2+y2+2xy=9,进而得出.

解答 解:∵x3+y3=(x+y)(x2-xy+y2)=27,x2-xy+y2=9,
∴x+y=3,∴x2+y2+2xy=9,
∴xy=0,∴x2+y2=9,
因此:x+y=3,x2+y2=9.

点评 本题考查了乘法公式、因式分解方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知矩阵A=$[{\begin{array}{l}1&0\\ 0&2\end{array}}]$,B=$[{\begin{array}{l}1&1\\ 0&1\end{array}}]$.
(1)求矩阵AB;
(2)求矩阵AB的逆矩阵.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=Asin(ωx+φ)(A>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(1)求出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为($\frac{7π}{12}$,0),求θ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,x∈R.
(Ⅰ)分别求出f(2)+f($\frac{1}{2}$),f(3)+f($\frac{1}{3}$),f(4)+f($\frac{1}{4}$)的值;
(Ⅱ) 根据(Ⅰ)归纳猜想出f(x)+f($\frac{1}{x}$)的值,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.盒中装有7个零件,其中4个是没有使用过的,3个是使用过的.
(Ⅰ)从盒中每次随机抽取1个零件,有放回的抽取3次(不使用),求3次抽取中恰有2次抽到使用过零件的概率;
(Ⅱ)从盒中任意抽取3个零件,使用后放回盒子中,设X为盒子中使用过零件的个数,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知角α的终点经过点(-$\sqrt{3}$,1),则sinα的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2-4x+alnx(a∈R,a≠0),f′(x)为函数f(x)的导函数.
(1)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)求函数f(x)的单调区间;
(3)若存在实数x1,x2,且x1<x2,使得f′(x1)=f′(x2)=0,求证:f(x2)>-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知复数z满足|z|=3,则|z+4|+|z-4|的取值范围是[8,10].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.假设某人的手机在一天内收到1条、2条、3条垃圾短信的概率分别为0.5、0.3、0.2,则该手机明天和后天一共收到至少5条垃圾短信的概率为(  )
A.0.1B.0.16C.0.2D.0.5

查看答案和解析>>

同步练习册答案