精英家教网 > 高中数学 > 题目详情
13.如图所示,直径分别为AB、OC的两圆相交于B、D两点,O为AB的中点.
(1)求证:AD∥OC;
(2)若OA=2,求AD•OC的值.

分析 (1)要证明AD∥OC,我们要根据直线平行的判定定理,观察已知条件及图形,我们可以连接BD、OD,只要证明BD⊥OC,BD⊥AD
即可得证.
(2)因为⊙O的半径为2,而其它线段长均为给出,故要想求AD•OC的值,我们要将其转化用半径相等或相关的线段积的形式,结合(1)的结论,我们易证明Rt△BAD∽Rt△ODC,根据相似三角形性质,不难得到转化的思路.

解答 (1)证明:如图,连接BD、OD.
∵直径分别为AB、OC的两圆相交于B、D两点
∴BD⊥OC,BD⊥AD
∴AD∥OC;
(2)解:AO=OD,则∠ODA=∠A=∠DOC,
∴Rt△BAD∽Rt△ODC,
∵圆O的半径为2,
∴AD•OC=AB•OD=8.

点评 根据求证的结论,使用分析推敲证明过程中所需要的条件,进而分析添加辅助线的方法,是平面几何证明必须掌握的技能,大家一定要熟练掌握,而在(2)中根据已知条件分析转化的方向也是解题的主要思想.解决就是寻找解题的思路,由已知出发,找寻转化方向和从结论出发寻找转化方向要结合在一起使用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.如图,函数$y=\sqrt{x}$的图象过矩形OABC的顶点B,且OA=4.若在矩形OABC内随机地撒100粒豆子,落在图中阴影部分的豆子有67粒,则据此可以估算出图中阴影部分的面积约为(  )
A.2.64B.2.68C.5.36D.6.64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点M(-4,0),N(4,0),B(2,0),动圆C与直线MN切于点B,过M、N与圆C相切的两直线相交于点P,则P点的轨迹方程是(  )
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x>2)B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x<-2)
C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x≠±2)D.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{12}$=1(x≠±2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,E为PD的中点.
(Ⅰ)求证:CE∥平面PAB;
(Ⅱ)当PA⊥CD,PA=AC,AB=1,PD=2$\sqrt{5}$时,求二面角P-CE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}的前n项和Sn=n2-2n+1,△ABC的三边长之比为a3:a4:a5,则△ABC的最大角的余弦值为(  )
A.$\frac{\sqrt{2}-\sqrt{6}}{4}$B.-$\frac{1}{2}$C.-$\frac{1}{4}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.命题“?x0∈R,x02-6x0+10<0”的否定是“?x∈R,x2-6x+10≥0”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{OA}$=(3,-4),$\overrightarrow{OB}$=(6,-3),$\overrightarrow{OC}$=(5-x,3).
(1)若点A,B,C三点共线,求x的值;
(2)若△ABC为直角三角形,且∠B为直角,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若数列{an}的前n项和为Sn,对任意正整数n都有Sn=$\frac{4}{3}$(an-2),设bn=log2an
(1)证明数列{bn}是等差数列;
(2)设cn=(-1)n+1$\frac{4(n+1)}{{b}_{n}{b}_{n+1}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}+\overrightarrow{b}$=(5,-10),$\overrightarrow{a}-\overrightarrow{b}$=(3,6),则$\overrightarrow{a}•\overrightarrow{b}$=(  )
A.-12B.-20C.12D.20

查看答案和解析>>

同步练习册答案