精英家教网 > 高中数学 > 题目详情
椭圆
x2
45
+
y2
m
=1(0<m<45)的焦点分别是F1和F2,已知椭圆的离心率e=
5
3
,过椭圆的中心O作直线与椭圆交于A,B两点,O为原点,若△ABF2的面积是20,求:
(1)m的值
(2)直线AB的方程.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(1)由已知e=
c
a
=
5
3
a=
45
=3
5
,由此能求出m的值.
(2)根据题意S△ABF2=SF1F2B=20,设B(x,y),则SF1F2B=
1
2
•|F1F2||y|
,|F1F2|=2c=10,由此能求出直线AB的方程.
解答: 解:(1)由已知e=
c
a
=
5
3

a=
45
=3
5
,解得c=5,
∴m=b2=a2-c2=45-25=20
(2)根据题意S△ABF2=SF1F2B=20
设B(x,y),则SF1F2B=
1
2
•|F1F2||y|

|F1F2|=2c=10,
∴y=±4,把y=±4代入椭圆的方程
x2
45
+
y2
20
=1
,解得x=±3,
∴B点的坐标为(±3,±4),
∴直线AB的方程为y=
4
3
x或y=-
4
3
x
点评:本题考查椭圆中参数的求法,考查直线方程的求法,解题时要认真审题,注意函数与方程思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合U=R,集合M={x|x>1},P={x|x2>1},则下列关系正确的是(  )
A、M=P
B、(∁UM)∩P=∅
C、P⊆M
D、M⊆P

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两条直线l1:x+(1+m)y=2-m,l2:2mx+4y=-16,m为何值时,l1与l2:(1)平行  (2)垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

哈三中高二某班为了对即将上市的班刊进行合理定价,将对班刊按事先拟定的价格进行试销,得到如下数据:
单价x(元)88.28.48.68.89
销量y(元)908483807568
(Ⅰ)求回归直线方程
y
=bx+a;(其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
,a=
.
y
-b
.
x

(Ⅱ)预计今后的销售中,销量与单价服从(Ⅰ)中的关系,且班刊的成本是4元/件,为了获得最大利润,班刊的单价定为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

在自然条件下,某草原上野兔第n年年初的数量记为xn,该年的增长量yn和xn与1-
xn
m
的乘积成正比,比例系数为λ(0<λ<1),其中m是与n无关的常数,且x1<m,
(1)证明:yn
λm
4

(2)用xn表示xn+1,并证明草原上的野兔总数量恒小于m.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,异面直线A1B与AC所成的角是
 
°.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=-2asin(2x+
π
6
)+2a+b,
(1)求f(x)的周期
(2)若a>0,求f(x)的最大值,并求出取得最大值时的x的集合.
(3)若x∈[
π
4
4
],是否存在常数a、b∈Q,使得f(x)的值域为{y|-3≤y≤
3
-1}?若存在,求出a、b的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

目前四年一度的世界杯在巴西举行,为调查哈三中高二学生是否熬夜看世界杯用简单
随机抽样的方法调查了110名高二学生,结果如下表:
性别
是否熬夜看球
4020
2030
(Ⅰ)若哈三中高二学年共有1100名学生,试估计大约有多少学生熬夜看球;
(Ⅱ)能否有99%以上的把握认为“熬夜看球与性别有关”?
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边长分别为a,b,c.若b2+c2-a2=
2
3
bc,则sinA=
 

查看答案和解析>>

同步练习册答案