精英家教网 > 高中数学 > 题目详情
目前四年一度的世界杯在巴西举行,为调查哈三中高二学生是否熬夜看世界杯用简单
随机抽样的方法调查了110名高二学生,结果如下表:
性别
是否熬夜看球
4020
2030
(Ⅰ)若哈三中高二学年共有1100名学生,试估计大约有多少学生熬夜看球;
(Ⅱ)能否有99%以上的把握认为“熬夜看球与性别有关”?
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
考点:独立性检验的应用
专题:计算题,概率与统计
分析:(Ⅰ)110名学生熬夜看球,有60名,故1100名学生,大约有600名学生熬夜看球;
(Ⅱ)代入公式计算k的值,和临界值表比对后即可得到答案.
解答: 解:(Ⅰ)110名学生熬夜看球,有60名,故1100名学生,大约有600名学生熬夜看球;
(Ⅱ)K2=
110×(40×30-20×20)2
60×50×60×50
≈7.82>6.635,
∴能有99%以上的把握认为“熬夜看球与性别有关”.
点评:本题是一个独立性检验,我们可以利用临界值的大小来决定是否拒绝原来的统计假设,若值较大就拒绝假设,即拒绝两个事件无关.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

三棱柱ABC-A1B1C1体积为V,M是AA1中点,求四棱锥M-BCC1B1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
45
+
y2
m
=1(0<m<45)的焦点分别是F1和F2,已知椭圆的离心率e=
5
3
,过椭圆的中心O作直线与椭圆交于A,B两点,O为原点,若△ABF2的面积是20,求:
(1)m的值
(2)直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
1
3
cos(2x-
π
4
)+1的最大值,及此时自变量x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinxcosx-
1
2
cos2x,x∈R.
(1)求函数f(x)的最小正周期;
(2)在△ABC中,角A、B、C的对边分别为a、b、c,且满足2bcosA=2c-
3
a,求f(B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为常数,求数列a,2a2,3a2,…,nan的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AD⊥CD,DB平分∠ADC,E是PC的中点,AD=CD=1,DB=2
2

(Ⅰ)求证:PA∥平面BDE;
(Ⅱ)求证:AC⊥平面PBD;
(Ⅲ)求直线BC与平面PBD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
ex
1+ax2
,其中a为正实数.
(1)求f(x)在x=0处的切线方程;
(2)若f(x)为R上的单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知长方体ABCD-A1B1C1D1的高为h,∠AB1D=30°,∠BB1D=45°,则它的体积是
 

查看答案和解析>>

同步练习册答案