精英家教网 > 高中数学 > 题目详情
13.若f(x)是定义在R上的函数,对任意的实数x都有:f(x+6)≤f(x+2)+4和f(x+4)≥f(x+2)+2,且f(1)=1,则f(2013)=2013.

分析 由已知式子可得f(x+6)=f(x+2)+4,再由f(1)=1找规律可得.

解答 解:∵f(x+4)≥f(x+2)+2,
∴f(x+6)=f[(x+2)+4]≥f(x+4)+2
≥f(x+2)+2+2=f(x+2)+4,
又∵f(x+6)≤f(x+2)+4,
∴f(x+6)=f(x+2)+4,
∴f(5)=f(1)+4=5,
f(9)=f(5)+4=9,
$…\\;\\;\\;\\;\\;\\;…$     $…\\;\\;\\;\\;\\;\\;…$
f(2013)=2013
故答案为:2013

点评 本题考查函数的值,得出其中的规律是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.一个正方体的平面展开图及正方体的直观图的示意图如图所示:
(Ⅰ)请将字母E,F,G,H标记在正方体相应的顶点处(不需说明理由);
(Ⅱ)在正方体中,判断平面BEG与平面ACH的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.关于下列命题:
①函数f(x)=|2cos2x-1|最小正周期是π;
②函数y=cos2($\frac{π}{4}$-x)是偶函数;
③函数y=4sin(2x-$\frac{π}{3}$)的一个对称中心是($\frac{π}{6}$,0);
④关于x的方程sinx+$\sqrt{3}$cosx=a(0≤x≤$\frac{π}{2}$)有两相异实根,则实数a的取值范围是(1,2).
写出所有正确的命题的题号:③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a>0,b>0满足a+b=2,则$\frac{1}{a}+\frac{9}{b}$的最小值为(  )
A.4B.8C.16D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.椭圆$\frac{{x}^{2}}{4}$+y2=1的两个焦点为F1,F2,过F2作垂直于x轴的直线与椭圆相交,一个交点为P,则|PF1|等于(  )
A.$\sqrt{3}$B.$\frac{3}{2}$C.$\frac{7}{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设f(x)为奇函数,g(x)为偶函数,则下列函数中是奇函数的是(  )
A.f(g(x))B.g(f(x))C.f(f(x))D.g(g(x))

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若(x+$\frac{2}{x}$)n的展开式中各项的系数之和为81,且常数项为a,则直线y=$\frac{a}{6}$x与曲线y=x2所围成的封闭区域面积为$\frac{32}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,PA垂直于正方形ABCD所在的平面,A为垂足,点O为正方形ABCD对角线AC和BD的交点.
(1)判断CD与平面PAD是否垂直?
(2)判断平面PCD与平面PAD是否垂直?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知$\overrightarrow{a}$=(3,-1),$\overrightarrow{b}$=(1,-2),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

同步练习册答案