精英家教网 > 高中数学 > 题目详情

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超过x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中a的值;
(Ⅱ)若将频率视为概率,从该城市居民中随机抽取3人,记这3人中月均用水量不低于3吨的人数为X,求X的分布列与数学期望.
(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值(精确到0.01),并说明理由.

【答案】解:(Ⅰ)根据频率和为1,得 (0.06+0.18+2a+0.42+0.52+0.11+0.06+0.03)×0.5=1,
解得a=0.30;
(Ⅱ)月均用水量不低于3吨的频率为
(0.11+0.06+0.03)×0.5=0.1,
则p=0.1,抽取的人数为X,
则X的可能取值为0,1,2,3;
∴P(X=0)= 0.93=0.729,
P(X=1)= 0.10.92=0.243,
P(X=2)= 0.120.9=0.027,
P(X=3)= 0.13=0.001;
∴X的分布列为

X

0

1

2

3

P

0.729

0.243

0.027

0.001

数学期望为EX=0×0.729+1×0.243+2×0.027+3×0.001=0.3;
(Ⅲ)由图可知,月均用水量小于2.5吨的居民人数所占的百分比为
0.5×(0.06+0.18+0.3+0.42+0.52)=0.73,
即73%的居民月均用水量小于2.5吨;
同理,88%的居民月均用水量小于3吨;
故2.5<x<3,
假设月均用水量平均分布,则
x=2.5+0.5× =2.9(吨),
即85%的居民每月用水量不超过标准为2.9吨
【解析】(Ⅰ)根据频率和为1,列出方程求得a的值;(Ⅱ)计算月均用水量不低于3吨的频率值,由抽取的人数X的可能取值为0,1,2,3; 计算对应的概率值,写出X的分布列,计算数学期望值;(Ⅲ)计算月均用水量小于2.5吨和小于3吨的百分比,
求出有85%的居民月用水量不超过的标准值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间和最小值;

(2)若函数上的最小值为,求的值;

(3)若,且对任意恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查高中生的数学成绩与学生自主学习时间之间的相关关系,某重点高中数学教师对新入学的45名学生进行了跟踪调查,其中每周自主做数学题的时间不少于15小时的有19人,余下的人中,在高三模拟考试中数学平均成绩不足120分的占 ,统计成绩后,得到如下的2×2列联表:

分数大于等于120分

分数不足120分

合计

周做题时间不少于15小时

4

19

周做题时间不足15小时

合计

45

(Ⅰ)请完成上面的2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“高中生的数学成绩与学生自主学习时间有关”;
(Ⅱ)( i)按照分层抽样的方法,在上述样本中,从分数大于等于120分和分数不足120分的两组学生中抽取9名学生,设抽到的不足120分且周做题时间不足15小时的人数是X,求X的分布列(概率用组合数算式表示);
( ii)若将频率视为概率,从全校大于等于120分的学生中随机抽取20人,求这些人中周做题时间不少于15小时的人数的期望和方差.
附:

P(K2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的渐近线方程为,左焦点为F,过的直线为原点到直线的距离是

(1)求双曲线的方程;

(2)已知直线交双曲线于不同的两点CD,问是否存在实数,使得以CD为直径的圆经过双曲线的左焦点F。若存在求出m的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面ABC,,EBC的中点.

求证:

求异面直线AE所成的角的大小;

G中点,求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的标准方程是.

(1)求它的焦点坐标和准线方程;

(2)直线过已知抛物线的焦点且倾斜角为45°,且与抛物线的交点为,求的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的空间几何体中,四边形是边长为2的正方形, 平面 .

(1)求证:平面平面

(2)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ln23x﹣2a(x+3ln3x)+10a2 , 若存在x0使得 成立,则实数a的值为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱锥D﹣ABC侧棱两两垂直,E为棱AD中点,平面α过点A,且α∥平面EBC,α∩平面ABC=m,α∩平面ACD=n,则m,n所成角的余弦值是

查看答案和解析>>

同步练习册答案