精英家教网 > 高中数学 > 题目详情

【题目】如图,在△ABC中,∠ABC=90°, ,BC=1,P为△ABC内一点,∠BPC=90°

(1)若 ,求PA;
(2)若∠APB=150°,求tan∠PBA.

【答案】
(1)解:在Rt△PBC中, = ,∴∠PBC=60°,∴∠PBA=30°.

在△PBA中,由余弦定理得PA2=PB2+AB2﹣2PBABcos30°= =

∴PA=


(2)解:设∠PBA=α,在Rt△PBC中,PB=BCcos(90°﹣α)=sinα.

在△PBA中,由正弦定理得 ,即

化为 .∴


【解析】(1)在Rt△PBC,利用边角关系即可得到∠PBC=60°,得到∠PBA=30°.在△PBA中,利用余弦定理即可求得PA.(2)设∠PBA=α,在Rt△PBC中,可得PB=sinα.在△PBA中,由正弦定理得 ,即 ,化简即可求出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中,若成等差数列,且三个内角也成等差数列,则的形状为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若为偶函数,求的值并写出的增区间;

(Ⅱ)若关于的不等式的解集为,当时,求的最小值;

(Ⅲ)对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在空间中有如下命题,其中正确的是(

A. 若直线ab共面,直线bc共面,则直线ac共面;

B. 若平面α内的任意直线m∥平面β,则平面α∥平面β

C. 若直线a与平面不垂直,则直线a与平面内的所有直线都不垂直;

D. 若点P到三角形三条边的距离相等,则点P在该三角形所在平面内的射影是该三角形的内心.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: 的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系,已知直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为直线与曲线交于两点.

(1)求直线l的普通方程和曲线的直角坐标方程;

(2)已知点的极坐标为,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A. yx具有正的线性相关关系

B. 回归直线过样本点的中心(

C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg

D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为 ,各局比赛的结果都相互独立,第1局甲当裁判.
(1)求第4局甲当裁判的概率;
(2)X表示前4局中乙当裁判的次数,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形为等腰梯形,,已知,四边形为直角梯形,.

(1)证明:平面平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案