精英家教网 > 高中数学 > 题目详情
18.已知F1,F2为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a,b>0)$的左右焦点,过F1的直线l与圆x2+y2=b2相切于点M,且|MF2|=2|MF1|,则直线l的斜率是(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{7}}}{2}$C.$±\frac{{\sqrt{3}}}{2}$D.$±\frac{{\sqrt{7}}}{2}$

分析 设F1,F2为(-c,0),(c,0),设直线l的斜率为k,可得直线l的方程为y=k(x+c),由直线和圆相切可得d=r,运用点到直线的距离公式,以及三角形的勾股定理和中线长公式,可得b,c的关系和k的方程,解方程可得斜率k.

解答 解:设F1,F2为(-c,0),(c,0),
设直线l的斜率为k,可得直线l的方程为y=k(x+c),
由过F1的直线l与圆x2+y2=b2相切,
可得$\frac{|kc|}{\sqrt{1+{k}^{2}}}$=b,
平方可得b2(1+k2)=k2c2,①
在直角三角形OMF1中,可得|MF1|=$\sqrt{{c}^{2}-{b}^{2}}$=a,
即有|MF2|=2|MF1|=2a,
由OM为三角形MF1F2的中线,可得
(2|OM|)2+(|F1F2|)2=2(|MF1|2+|MF2|2),
即为4b2+4c2=2(a2+4a2),
即有10a2=10(c2-b2)=4b2+4c2
即有3c2=7b2
代入①可得,1+k2=$\frac{7}{3}$k2
解得k=±$\frac{\sqrt{3}}{2}$.
故选:C.

点评 本题考查直线的斜率的求法,注意运用直线和圆相切的条件:d=r,以及平面几何中三角形的勾股定理和中线长公式,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.《九章算术》是我国古代的数学名著,体现了古代劳动人民的数学智慧,其中第六章“均输”中,有一竹节容量问题,某人根据这一思想,设计了如图所示的程序框图,若输出m的值为35,则输入的a的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}前n项和为Sn,且满足a1=1,4Sn=anan+1+1.
(1)计算a2、a3、a4的值,并猜想{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.命题p:“?x>e,a-lnx<0”为真命题的一个充分不必要条件是(  )
A.a≤1B.a<1C.a≥1D.a>1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=\frac{e^x}{x}(x>0)$,直线l:x-ty-2=0.
(1)若直线l与曲线y=f(x)有且仅有一个公共点,求公共点横坐标的值;
(2)若0<m<n,m+n≤2,求证:f(m)>f(n).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)的定义域为D,若f(x)满足条件:存在[a,b]⊆D(a<b),使f(x)在[a,b]上的值域也是[a,b],则称为“优美函数”,若函数$f(x)={log_2}({4^x}+t)$为“优美函数”,则t的取值范围是(  )
A.$(\frac{1}{4},+∞)$B.(0,1)C.$(0,\frac{1}{2})$D.$(0,\frac{1}{4})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$与椭圆${C_2}:\frac{x^2}{4}+{y^2}=1$有相同的离心率,且经过点P(2,-1).
( I)求椭圆C1的标准方程;
( II)设点Q为椭圆C2的下顶点,过点P作两条直线分别交椭圆C1于A、B两点,若直线PQ平分∠APB,求证:直线AB的斜率为定值,并且求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.求值:25${\;}^{\frac{3}{2}}$=125;27${\;}^{\frac{2}{3}}$=9;($\frac{36}{49}$)${\;}^{\frac{3}{2}}$=$\frac{216}{343}$;($\frac{25}{4}$)${\;}^{-\frac{3}{2}}$=$\frac{8}{125}$;$\root{4}{8×\sqrt{{9}^{\frac{3}{2}}}}$=$\root{8}{1{2}^{3}}$;2$\sqrt{3}$×$\root{3}{1.5}$×$\root{6}{12}$=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=|2x+$\frac{3}{a}$|+2|x-a|
(1)若a=3,求f(x)≥4的解集;
(2)对任意a∈(0,+∞),任意x∈R,f(x)≥m恒成立,求实数m的最大值.

查看答案和解析>>

同步练习册答案