分析 设已知圆的圆心($\frac{1}{2}$,-1)关于直线x-y+1=0对称的点的坐标为(m,n),利用垂直、以及中点在轴上这2个条件,求得(m,n)的值,可得对称圆的方程.
解答 解:设圆${(x-\frac{1}{2})^2}+{(y+1)^2}=\frac{5}{4}$ 的圆心($\frac{1}{2}$,-1)关于直线x-y+1=0对称的点的坐标为(m,n),
由$\left\{\begin{array}{l}{\frac{n+1}{m-\frac{1}{2}}•1=-1}\\{\frac{m+\frac{1}{2}}{2}-\frac{n-1}{2}+1=0}\end{array}\right.$,求得$\left\{\begin{array}{l}{m=-2}\\{n=\frac{3}{2}}\end{array}\right.$,可得对称圆的圆心为(-2,$\frac{3}{2}$),
故对称圆的方程为(x+2)2+${(y-\frac{3}{2})}^{2}$=$\frac{5}{4}$.
点评 本题主要考查求一个点关于某直线的对称点的坐标的方法,利用了垂直、以及中点在轴上这2个条件,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-2,-8} | B. | {-8,2} | C. | {4,6} | D. | {-6,4} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 日需求量n(瓶) | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
| 频数 | 5 | 5 | 8 | 12 | 10 | 6 | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com