精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax2+bx+c(a>b>c),满足f(1)=0,且a2+[f(m1)+f(m2)]•a+f(m1)•f(m2)=0.
(1)求证a>0,c<0且b≥0;
(2)求证f(x)的图象被x轴所截得的线段长的取值范围是[2,3);问能否得出f(m1+3),f(m2+3)中至少有一个为正数,请证明你的结论.

证明:(1)∵函数f(x)=ax2+bx+c(a>b>c),满足f(1)=0,
∴a+b+c=0.(1分)
若a≤0,∵a>b>c∴b<0,c<0,
则有a+b+c<0,这与a+b+c=0矛盾,∴a>0成立.(2分)
若c≥0,则有b>0,a>0,此时a+b+c>0,这与a+b+c=0矛盾,
∴c<0成立.(3分)
∵a2+[f(m1)+f(m2)]•a+f(m1)•f(m2)=0
∴[a+f(m1)]•[a+f(m2)]=0,∴m1,m2是方程f(x)=-a的两根
∴△=b2-4a(a+c)=b(b+4a)=b(3a-c)≥0
而a>0,c<0∴3a-c>0,
∴b≥0.(4分)
(2)f(1)=0,∴1是方程f(x)=0的一个根,
设x1=1,另一个根为x2,有
∵b=-a-c≥0,a>0,∴
又a>0,a>-a-c>c,∴-2<≤-1,
<3,即2≤|x1-x|<3,
故f(x)的图象被x轴所截得的线段长的取值范围是[2,3).(8分)

由已知f(m1)=-a或f(m2)=-a,不妨设f(m1)=-a
<0,∴<m1<1
∴m1+3>+3>1,
∴f(m1+3)>f(1)>0,
同理当f(m2)=-a,有f(m2+3)>0,
所以f(m1+3),f(m2+3)中至少有一个为正数.(12分)
分析:(1)由习惯性左中函数f(x)=ax2+bx+c(a>b>c),满足f(1)=0,即a+b+c=0,我们可用反证法来证明a>0,c<0且b≥0;
(2)由f(1)=0,我们可得(1,0)是f(x)的图象与x轴的一个交点,我们由韦达定理及(1)中结论,确定出另一个根的范围,进而得到答案;
点评:本题考查的知识点是二次函数的性质,熟练掌握二次函数的性质,及二次方程与二次函数的关系是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案