精英家教网 > 高中数学 > 题目详情
已知a>0,b>0,且a+b=1,求证:
4
a
+
1
b
≥9.
考点:基本不等式
专题:证明题,不等式的解法及应用
分析:由a+b=1可知,得到
4
a
+
1
b
=
4(a+b)
a
+
a+b
b
,再利用基本不等式证明即可.
解答: 证明:由于a>0,b>0,且a+b=1,
4
a
+
1
b
=
4(a+b)
a
+
a+b
b
=5+
4b
a
+
a
b
≥5+2
4b
a
a
b
=9,
当且仅当
4b
a
=
a
b
即a=
2
3
,b=
1
3
时,等号成立,
所以
4
a
+
1
b
≥9.
点评:此题主要考查不等式的证明问题,其中涉及到基本不等式的应用,注意等号成立的条件,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数学归纳法证明“1+a+a2+…+an=
1-an+1
1-a
(a≠1,n∈N*)”时,验证当n=1时,等式的左边为(  )
A、1
B、1-a
C、1+a
D、1-a2

查看答案和解析>>

科目:高中数学 来源: 题型:

当x>1时,试比较x+lnx与e2x的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c是非零实数,且a2+b2+c2=1.
(1)证明:
1
a2
+
4
b2
+
9
c2
≥36

(2)若不等式
1
a2
+
4
b2
+
9
c2
≥|m|+|m-2|
对一切a,b,c恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

人寿保险很重视某一年龄段投保人的死亡率.假设每个投保人能活到65岁的概率为0.6,能活到75岁的概率为0.2,问:
(1)现有一位65岁的投保人,求他能活到75岁的概率;
(2)现有3名恰好65岁的投保人,每人投保6万元,若活不到75岁,则每位将获得8万元赔偿(不考虑其它因素),求保险公司获得净收益X的分布列及期望(净收入=收入-赔偿).

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的各项都是正数,且对任意n∈N*都有a13+a23+a33+…+an3=Sn2+2Sn,其中Sn为数列{an}的前n项和.
(Ⅰ) 求a1,a2
(Ⅱ) 求数列{an}的通项公式;
(Ⅲ)设bn=3n+(-1)n-1λ•2an,对任意的n∈N*,都有bn+1>bn恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1(侧棱和底面垂直的棱柱)中,平面A1BC⊥侧面A1ABB1,AB=BC=AA1=3,线段AC、A1B上分别有一点E、F且满足2AE=EC,2BF=FA1
(1)求证:AB⊥BC;
(2)求点E到直线A1B的距离;
(3)求二面角F-BE-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:
(1)x2-2x-3>0             
(2)2x2-x-1<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

设p:函数y=(a-1)x+1在x∈(-∞,+∞)内单调递减;q:曲线y=x2+ax+1与x轴交于不同的两点.
(1)若p为真且q为真,求a的取值范围;
(2)若p与q中一个为真一个为假,求a的取值范围.

查看答案和解析>>

同步练习册答案