精英家教网 > 高中数学 > 题目详情
9.已知$x,y∈(0,+∞),{2^{x-3}}={({\frac{1}{2}})^y}$,若$\frac{1}{x}+\frac{m}{y}(m>0)$的最小值为3,则m等于(  )
A.2B.$2\sqrt{2}$C.3D.4

分析 2x-3=$(\frac{1}{2})^{y}$=2-y,可得:x+y=3,m,x,y∈R+,$\frac{1}{x}+\frac{m}{y}$=$\frac{1}{3}$(x+y)$(\frac{1}{x}+\frac{m}{y})$=$\frac{1}{3}$(1+m+$\frac{y}{x}+\frac{mx}{y}$),利用基本不等式的性质即可得出.

解答 解:∵2x-3=$(\frac{1}{2})^{y}$=2-y,∴x-3=-y,
∴x+y=3,m,x,y∈R+
∴$\frac{1}{x}+\frac{m}{y}$=$\frac{1}{3}$(x+y)$(\frac{1}{x}+\frac{m}{y})$=$\frac{1}{3}$(1+m+$\frac{y}{x}+\frac{mx}{y}$)≥$\frac{1}{3}$$(1+m+2\sqrt{\frac{y}{x}•\frac{mx}{y}})$=$\frac{1}{3}(1+m+2\sqrt{m})$=3,当且仅当$y=\sqrt{m}$x时取等号.
∴$(\sqrt{m})^{2}$+2$\sqrt{m}$-8=0,m>0.
解得$\sqrt{m}$=2,即m=4.
故选:D.

点评 本题考查了基本不等式的性质、方程的解法、指数函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若${(1-2x)^7}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+$…$+{a_7}{x^7}$,则a0+a1+a2+…+a7=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知角α的终边过点$P({tan\frac{3π}{4},2})$,则cosα的值为-$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某几何体的三视图如图所示,则该几何体体积是(  )
A.$\frac{{(8+π)\sqrt{3}}}{3}$B.$\frac{{(8+2π)\sqrt{3}}}{6}$C.$\frac{{(8+π)\sqrt{3}}}{6}$D.$\frac{{(4+π)\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知动圆过定点(0,2),且在x轴上截得的弦长为4,记动圆圆心的轨迹为曲线C.
(1)求直线x-4y+2=0与曲线C围成的区域面积;
(2)点P在直线l:x-y-2=0上,点Q(0,1),过点P作曲线C的切线PA、PB,切点分别为A、B,证明:存在常数λ,使得|PQ|2=λ|QA|•|QB|,并求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若某三棱锥的三视图如图所示,其中俯视图为直角梯形,则这个三棱锥四个面的面积的最大值是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设的内角A,B,C所对的边分别为a,b,c,且$C=\frac{π}{6}$,a+b=12,面积的最大值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.《九章算术》是我国古代数学成就的杰出代表,其中《方田》章有弧田面积计算问题,计算术曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面积计算公式为:弧田面积=$\frac{1}{2}•(弦×矢+矢×矢)$,弧田是由圆弧(简称为弧田弧)和以圆弧的两端为顶点的线段(简称为弧田弦)围成的平面图形,公式中“弦”指的是弧
田弦的长,“矢”等于弧田弧所在圆的半径与圆心到弧田弦的距离之差.现有一弧田,其弦长AB等于6米,其弧所在圆为圆O,若用上述弧田面积计算公式算得该弧田的面积为$\frac{7}{2}$平方米,则cos∠AOB=(  )
A.$\frac{7}{25}$B.$\frac{3}{25}$C.$\frac{12}{25}$D.$\frac{2}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知:在数列{an}中,a1=1,${a_{n+1}}=\frac{a_n}{{3{a_n}+1}}$,判断{an}的单调性.
小明同学给出了如下解答思路,请补全解答过程.
第一步,计算:
根据已知条件,计算出:a2=$\frac{1}{4}$,a3=$\frac{1}{7}$,a4=$\frac{1}{10}$.
第二步,猜想:
数列{an}是递减(填递增、递减)数列.
第三步,证明:
因为${a_{n+1}}=\frac{a_n}{{3{a_n}+1}}$,所以$\frac{1}{{{a_{n+1}}}}=\frac{{3{a_n}+1}}{a_n}=\frac{1}{a_n}+$3.
因此可以判断数列$\{\frac{1}{a_n}\}$是首项$\frac{1}{a_1}$=1,公差d=3的等差数列.
故数列$\{\frac{1}{a_n}\}$的通项公式为3n-2.
且由此可以判断出:
数列$\{\frac{1}{a_n}\}$是递增(填递增、递减)数列,且各项均为正数(填正数、负数或零).
所以数列{an}是递减(填递增、递减)数列.

查看答案和解析>>

同步练习册答案