精英家教网 > 高中数学 > 题目详情
19.已知:在数列{an}中,a1=1,${a_{n+1}}=\frac{a_n}{{3{a_n}+1}}$,判断{an}的单调性.
小明同学给出了如下解答思路,请补全解答过程.
第一步,计算:
根据已知条件,计算出:a2=$\frac{1}{4}$,a3=$\frac{1}{7}$,a4=$\frac{1}{10}$.
第二步,猜想:
数列{an}是递减(填递增、递减)数列.
第三步,证明:
因为${a_{n+1}}=\frac{a_n}{{3{a_n}+1}}$,所以$\frac{1}{{{a_{n+1}}}}=\frac{{3{a_n}+1}}{a_n}=\frac{1}{a_n}+$3.
因此可以判断数列$\{\frac{1}{a_n}\}$是首项$\frac{1}{a_1}$=1,公差d=3的等差数列.
故数列$\{\frac{1}{a_n}\}$的通项公式为3n-2.
且由此可以判断出:
数列$\{\frac{1}{a_n}\}$是递增(填递增、递减)数列,且各项均为正数(填正数、负数或零).
所以数列{an}是递减(填递增、递减)数列.

分析 代值计算求出a2,a3,a4,再求出数列$\{\frac{1}{a_n}\}$的通项公式,再去判断增减性.

解答 解:第一步,计算:
根据已知条件,由于a1=1,${a_{n+1}}=\frac{a_n}{{3{a_n}+1}}$,
则a2=$\frac{{a}_{1}}{3{a}_{1}+1}$=$\frac{1}{4}$,a3=$\frac{{a}_{2}}{3{a}_{2}+1}$=$\frac{1}{7}$,a4=$\frac{1}{10}$,
第二步,猜想:
数列{an}是递减数列,
第三步,证明:
因为${a_{n+1}}=\frac{a_n}{{3{a_n}+1}}$,所以$\frac{1}{{{a_{n+1}}}}=\frac{{3{a_n}+1}}{a_n}=\frac{1}{a_n}+$ 3.
因此可以判断数列$\{\frac{1}{a_n}\}$是首项$\frac{1}{a_1}$=1,公差d=3的等差数列.
故数列$\{\frac{1}{a_n}\}$的通项公式为$\frac{1}{{a}_{n}}$=1+3(n-1)=3n-2.
且由此可以判断出:
数列$\{\frac{1}{a_n}\}$是递增数列,且各项均为正数.
所以数列{an}是递减数列,
故答案为:$\frac{1}{4}$,$\frac{1}{7}$,$\frac{1}{10}$,递减,3,1,3,3n-2,递增,正数,递减

点评 本题考查了递推关系的应用、数列的单调性、查了推理能力与计算能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知$x,y∈(0,+∞),{2^{x-3}}={({\frac{1}{2}})^y}$,若$\frac{1}{x}+\frac{m}{y}(m>0)$的最小值为3,则m等于(  )
A.2B.$2\sqrt{2}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为了了解某地区心肺疾病是否与性别有关,在某医院随机地对入院的50人进行了问卷调查,得到了如下的2×2列联表:
患心肺疾病不患心肺疾病合计
20525
101525
合计302050
(1)用分层抽样的方法在患心肺疾病的人群中抽取6人,其中男性抽多少人?
(2)在上述抽取的6人中选2人,求恰有一名女性的概率;
(3)为了研究心肺疾病是否与性别有关,请计算出统计量K2,判断是否有99.5%的把握认为
患心肺疾病与性别有关?
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
右面的临界值表供参考:
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)},其中n=a+b+c+d$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数f(x)=2sin(2x+$\frac{π}{4}$),则函数f(x)的最小正周期为π,单调递增区间为[-$\frac{3π}{8}$+kπ,$\frac{π}{8}$+kπ],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a=log0.50.3,b=log30.5,c=0.5-0.3,则a,b,c的大小关系是(  )
A.a>c>bB.c>a>bC.c>b>aD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知正态分布密度函数φμ,σ(x)=$\frac{1}{\sqrt{2π}σ}$${e}^{-\frac{(x-μ)^{2}}{2{σ}^{2}}}$,x∈(-∞,+∞),以下关于正态曲线的说法错误的是(  )
A.曲线与x轴之间的面积为1
B.曲线在x=μ处达到峰值$\frac{1}{\sqrt{2π}σ}$
C.当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移
D.当μ一定时,曲线的形状由σ确定,σ越小,曲线越“矮胖”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.空间直角坐标系中,点A(2,3,4)与点B(1,-2,1)的距离是(  )
A.$\sqrt{11}$B.$3\sqrt{3}$C.$\sqrt{35}$D.$\sqrt{59}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.从一组学生中选出3名学生当代表的选法种数为a,从这组学生中选出2人担任正、副组长的选法种数为b,若$\frac{b}{a}$=2,则这组学生共有人5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在极坐标中,和极轴垂直且相交的直线l与圆ρ=4相交于A,B两点,若|AB|=4,则直线l的极坐标方程为(  )
A.ρcos θ=2$\sqrt{3}$B.ρsin θ=2$\sqrt{3}$C.ρcos θ=$\sqrt{3}$D.ρsin θ=$\sqrt{3}$

查看答案和解析>>

同步练习册答案