10£®ÎªÁËÁ˽âijµØÇøÐķμ²²¡ÊÇ·ñÓëÐÔ±ðÓйأ¬ÔÚÄ³Ò½ÔºËæ»úµØ¶ÔÈëÔºµÄ50È˽øÐÐÁËÎʾíµ÷²é£¬µÃµ½ÁËÈçϵÄ2¡Á2ÁÐÁª±í£º
»¼Ðķμ²²¡²»»¼Ðķμ²²¡ºÏ¼Æ
ÄÐ20525
Ů101525
ºÏ¼Æ302050
£¨1£©Ó÷ֲã³éÑùµÄ·½·¨ÔÚ»¼Ðķμ²²¡µÄÈËȺÖгéÈ¡6ÈË£¬ÆäÖÐÄÐÐÔ³é¶àÉÙÈË£¿
£¨2£©ÔÚÉÏÊö³éÈ¡µÄ6ÈËÖÐÑ¡2ÈË£¬ÇóÇ¡ÓÐÒ»ÃûÅ®ÐԵĸÅÂÊ£»
£¨3£©ÎªÁËÑо¿Ðķμ²²¡ÊÇ·ñÓëÐÔ±ðÓйأ¬Çë¼ÆËã³öͳ¼ÆÁ¿K2£¬ÅжÏÊÇ·ñÓÐ99.5%µÄ°ÑÎÕÈÏΪ
»¼Ðķμ²²¡ÓëÐÔ±ðÓйأ¿
P£¨K2¡Ýk£©0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
ÓÒÃæµÄÁÙ½çÖµ±í¹©²Î¿¼£º
£¨²Î¿¼¹«Ê½£º${K^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}£¬ÆäÖÐn=a+b+c+d$£©

·ÖÎö £¨1£©¸ù¾Ý·Ö²ã³éÑùµÄ·½·¨£¬ÔÚ»¼Ðķμ²²¡µÄÈËȺÖгé6ÈË£¬ÏȼÆËãÁ˳éÈ¡±ÈÀý£¬ÔÙ¸ù¾Ý±ÈÀý¼´¿ÉÇó³öÄÐÐÔÓ¦¸Ã³éÈ¡ÈËÊý£®
£¨2£©ÔÚÉÏÊö³éÈ¡µÄ6ÃûѧÉúÖУ¬Å®ÐÔµÄÓÐ2ÈË£¬ÄÐÐÔ4ÈË£®Å®ÐÔ2È˼ÇA£¬B£»ÄÐÐÔ4ÈËΪc£¬d£¬e£¬f£¬ÁгöÆäÒ»ÇпÉÄܵĽá¹û×é³ÉµÄ»ù±¾Ê¼þ¸öÊý£¬Í¨¹ýÁоٵõ½Âú×ãÌõ¼þʼþÊý£¬Çó³ö¸ÅÂÊ£®
£¨3£©¸ù¾ÝËù¸øµÄ¹«Ê½£¬´úÈëÊý¾ÝÇó³öÁÙ½çÖµ£¬°ÑÇóµÃµÄ½á¹ûͬÁÙ½çÖµ±í½øÐбȽϣ¬¿´³öÓжà´óµÄ°ÑÎÕÈÏΪÐķμ²²¡ÓëÐÔ±ðÓйأ®

½â´ð ½â£º£¨1£©¸ù¾ÝÌâÒ⣬ÔÚ»¼Ðķμ²²¡µÄÈËȺÖгé6ÈË£¬Ôò³éÈ¡±ÈÀýΪ$\frac{6}{30}$=$\frac{1}{5}$£¬
ÓÖÓÉÔÚ»¼Ðķμ²²¡µÄÈËȺÓÐÄÐÉú20ÈË£¬
ÔòÄÐÐÔÓ¦¸Ã³éÈ¡20¡Á$\frac{1}{5}$=4ÈË£¬
£¨2£©¸ù¾ÝÌâÒ⣬ÔÚÉÏÊö³éÈ¡µÄ6ÃûѧÉúÖУ¬Å®ÐÔµÄÓÐ2ÈË£¬ÄÐÐÔ4ÈË£®Å®ÐÔ2È˼ÇA£¬B£»ÄÐÐÔ4ÈËΪc£¬d£¬e£¬f£¬
Ôò´Ó6ÃûѧÉúÈÎÈ¡2ÃûµÄËùÓÐÇé¿öΪ£º£¨A£¬B£©¡¢£¨A£¬c£©¡¢£¨A£¬d£©¡¢£¨A£¬e£©¡¢£¨A£¬f£©¡¢£¨B£¬c£©¡¢£¨B£¬d£©¡¢£¨B£¬e£©¡¢£¨B£¬f£©¡¢£¨c£¬d£©¡¢£¨c£¬e£©¡¢£¨c£¬f£©¡¢£¨d£¬e£©¡¢£¨d£¬f£©¡¢£¨e£¬f£©¹²15ÖÖÇé¿ö£¬
ÆäÖÐÇ¡ÓÐ1ÃûÅ®ÉúÇé¿öÓУº£¨A£¬c£©¡¢£¨A£¬d£©¡¢£¨A£¬e£©¡¢£¨A£¬f£©¡¢£¨B£¬c£©¡¢£¨B£¬d£©¡¢£¨B£¬e£©¡¢£¨B£¬f£©£¬¹²8ÖÖÇé¿ö£¬
¹ÊÉÏÊö³éÈ¡µÄ6ÈËÖÐÑ¡2ÈË£¬Ç¡ÓÐÒ»ÃûÅ®ÐԵĸÅÂʸÅÂÊΪ$\frac{8}{15}$£»
£¨3£©£©¡ßK2=$\frac{50£¨20¡Á15-10¡Á5£©^{2}}{25¡Á25¡Á30¡Á20}$¡Ö8.333£¬ÇÒP£¨k2¡Ý7.879£©=0.005=0.5%£¬
ÄÇô£¬ÎÒÃÇÓÐ99.5%µÄ°ÑÎÕÈÏΪÊÇ·ñ»¼Ðķμ²²¡ÊÇÓëÐÔ±ðÓйØÏµµÄ£®

µãÆÀ ±¾Ì⿼²é¶ÀÁ¢ÐÔ¼ìÑéµÄÓ¦Óã¬Éæ¼°¹Åµä¸ÅÐ͵ļÆËãÓë·Ö²ã³éÑù·½·¨£¬¹Ø¼üÊÇÊìÁ·ÕÆÎÕÀûÓöÀÁ¢ÐÔ¼ìÑéµÄ·½·¨ÅжϱäÁ¿Ïà¹ØµÄ¿É¿¿ÐԳ̶ȵķ½·¨£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖª½Ç¦ÁµÄÖձ߹ýµã$P£¨{tan\frac{3¦Ð}{4}£¬2}£©$£¬Ôòcos¦ÁµÄֵΪ-$\frac{\sqrt{5}}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÉèµÄÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÇÒ$C=\frac{¦Ð}{6}$£¬a+b=12£¬Ãæ»ýµÄ×î´óֵΪ9£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®¡¶¾ÅÕÂËãÊõ¡·ÊÇÎÒ¹ú¹Å´úÊýѧ³É¾ÍµÄ½Ü³ö´ú±í£¬ÆäÖС¶·½Ìï¡·ÕÂÓл¡ÌïÃæ»ý¼ÆËãÎÊÌ⣬¼ÆËãÊõÔ»£ºÒÔÏÒ³Ëʸ£¬Ê¸ÓÖ×Գˣ¬²¢Ö®£¬¶þ¶øÒ»£®Æä´óÒâÊÇ£¬»¡ÌïÃæ»ý¼ÆË㹫ʽΪ£º»¡ÌïÃæ»ý=$\frac{1}{2}•£¨ÏÒ¡Áʸ+ʸ¡Áʸ£©$£¬»¡ÌïÊÇÓÉÔ²»¡£¨¼ò³ÆÎª»¡Ìﻡ£©ºÍÒÔÔ²»¡µÄÁ½¶ËΪ¶¥µãµÄÏ߶Σ¨¼ò³ÆÎª»¡ÌïÏÒ£©Î§³ÉµÄÆ½ÃæÍ¼ÐΣ¬¹«Ê½ÖС°ÏÒ¡±Ö¸µÄÊÇ»¡
ÌïÏҵij¤£¬¡°Ê¸¡±µÈÓÚ»¡ÌﻡËùÔÚÔ²µÄ°ë¾¶ÓëÔ²Ðĵ½»¡ÌïÏҵľàÀëÖ®²î£®ÏÖÓÐÒ»»¡ÌÆäÏÒ³¤ABµÈÓÚ6Ã×£¬Æä»¡ËùÔÚԲΪԲO£¬ÈôÓÃÉÏÊö»¡ÌïÃæ»ý¼ÆË㹫ʽËãµÃ¸Ã»¡ÌïµÄÃæ»ýΪ$\frac{7}{2}$ƽ·½Ã×£¬Ôòcos¡ÏAOB=£¨¡¡¡¡£©
A£®$\frac{7}{25}$B£®$\frac{3}{25}$C£®$\frac{12}{25}$D£®$\frac{2}{25}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖª¡ÑCµÄÔ²ÐÄÔÚÖ±Ïßy=xÉÏ£¬ÇÒÓëÖ±Ïßy=1ÏàÇÐÓëµã£¨-1£¬1£©£®
£¨1£©Çó¡ÑCµÄ±ê×¼·½³Ì£»
£¨2£©Çó¹ýµãP£¨0£¬1£©ÇÒ±»¡ÑC½ØµÃÏÒ³¤Îª$2\sqrt{3}$µÄÖ±Ïߵķ½³Ì£»
£¨3£©ÒÑÖª¡ÑO£ºx2+y2=r2£¨r£¾0£©£¬ÊÇ·ñ´æÔÚÕâÑùµÄrµÄֵʹµÃ¡ÑOÄÜÆ½·Ö¡ÑCµÄÖܳ¤£¿Èô´æÔÚ£¬Çó³örµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÄãµÄÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®½«º¯Êýy=cos2xµÄͼÏóÏò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»£¬ËùµÃµÄº¯ÊýΪ£¨¡¡¡¡£©
A£®y=cos£¨2x+$\frac{¦Ð}{3}$£©B£®y=cos£¨2x+$\frac{¦Ð}{6}$£©C£®y=cos£¨2x-$\frac{¦Ð}{3}$£©D£®y=cos£¨2x-$\frac{¦Ð}{6}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®º¯Êýy=sinxcosxÊÇ£¨¡¡¡¡£©
A£®ÖÜÆÚΪ2¦ÐµÄÆæº¯ÊýB£®ÖÜÆÚΪ2¦ÐµÄżº¯Êý
C£®ÖÜÆÚΪ¦ÐµÄÆæº¯ÊýD£®ÖÜÆÚΪ¦ÐµÄżº¯Êý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖª£ºÔÚÊýÁÐ{an}ÖУ¬a1=1£¬${a_{n+1}}=\frac{a_n}{{3{a_n}+1}}$£¬ÅжÏ{an}µÄµ¥µ÷ÐÔ£®
СÃ÷ͬѧ¸ø³öÁËÈçϽâ´ð˼·£¬Ç벹ȫ½â´ð¹ý³Ì£®
µÚÒ»²½£¬¼ÆË㣺
¸ù¾ÝÒÑÖªÌõ¼þ£¬¼ÆËã³ö£ºa2=$\frac{1}{4}$£¬a3=$\frac{1}{7}$£¬a4=$\frac{1}{10}$£®
µÚ¶þ²½£¬²ÂÏ룺
ÊýÁÐ{an}Êǵݼõ£¨ÌîµÝÔö¡¢µÝ¼õ£©ÊýÁУ®
µÚÈý²½£¬Ö¤Ã÷£º
ÒòΪ${a_{n+1}}=\frac{a_n}{{3{a_n}+1}}$£¬ËùÒÔ$\frac{1}{{{a_{n+1}}}}=\frac{{3{a_n}+1}}{a_n}=\frac{1}{a_n}+$3£®
Òò´Ë¿ÉÒÔÅжÏÊýÁÐ$\{\frac{1}{a_n}\}$ÊÇÊ×Ïî$\frac{1}{a_1}$=1£¬¹«²îd=3µÄµÈ²îÊýÁУ®
¹ÊÊýÁÐ$\{\frac{1}{a_n}\}$µÄͨÏʽΪ3n-2£®
ÇÒÓÉ´Ë¿ÉÒÔÅжϳö£º
ÊýÁÐ$\{\frac{1}{a_n}\}$ÊǵÝÔö£¨ÌîµÝÔö¡¢µÝ¼õ£©ÊýÁУ¬ÇÒ¸÷Ïî¾ùΪÕýÊý£¨ÌîÕýÊý¡¢¸ºÊý»òÁ㣩£®
ËùÒÔÊýÁÐ{an}Êǵݼõ£¨ÌîµÝÔö¡¢µÝ¼õ£©ÊýÁУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñ=1£¬ÒÔ¼«µãÎªÆ½ÃæÖ±½Ç×ø±êϵµÄÔ­µã£¬¼«ÖáΪxµÄÕý°ëÖᣬ½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵxOy£®
£¨1£©ÈôÇúÏß${C_2}£º\left\{\begin{array}{l}x=1+t\\ y=2+t\end{array}\right.£¨t$Ϊ²ÎÊý£©ÓëÇúÏßC1ÏཻÓÚÁ½µãA£¬B£¬Çó|AB|£»
£¨2£©ÈôMÊÇÇúÏßC1Éϵ͝µã£¬ÇÒµãMµÄÖ±½Ç×ø±êΪ£¨x£¬y£©£¬Çó£¨x+1£©£¨y+1£©µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸