精英家教网 > 高中数学 > 题目详情
11.若等差数列{an}前n项和Sn有最大值,且$\frac{{{a_{11}}}}{{{a_{12}}}}$<-1,则当数列{Sn}的前n项和Tn取最大值时,n的值为(  )
A.11B.12C.22D.23

分析 确定d<0,再由$\frac{{{a_{11}}}}{{{a_{12}}}}<-1$,知a11>0,a12<0,从而有a11+a12>0,即可得出结论.

解答 解:由等差数列的前n项和有最大值,可知d<0,再由$\frac{{{a_{11}}}}{{{a_{12}}}}<-1$,知a11>0,a12<0,从而有a11+a12>0,即S22>0,S23<0,从而使得数列{Sn}的前n项和取最大值的n=22,
故选C.

点评 本小题主要考查对等差数列通项以及变化规律的理解,还包括前n项和的理解,理解了等差数列性质以及特点的学生解决此类问题会比较容易.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设关于x的不等式|x-2|<a(a∈R)的解集为A,且$\frac{3}{2}$∈A,-$\frac{1}{2}$∉A.
(1)对任意的x∈R,|x-1|+|x-3|≥a2+a恒成立,且a∈N,求a的值.
(2)若a+b=1,a,b∈R+,求$\frac{1}{3b}$+$\frac{b}{a}$的最小值,并指出取得最小值时a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在正三角形ABC中,AD⊥BC于D,沿AD折成二面角B-AD-C后,BC=$\frac{1}{2}$AB,这时二面角B-AD-C的大小为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线l过抛物线C:y2=4x的焦点,且与抛物线C交于A、B两点,过点A、B分别向抛物线的准线作垂线,垂足分别为P、Q,则四边形APQB的面积的最小值为(  )
A.6B.8C.$8\sqrt{2}$D.$10\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某城市随机监测一年内100天的空气质量PM2.5的数据API,结果统计如下:
API[0,50](50,100](100,150](150,200](200,250](250,+∞)
天数61222301416
(1)若将API值低于150的天气视为“好天”,并将频率视为概率,根据上述表格,预测今年高考6月7日、8日两天连续出现“好天”的概率;
(2)API值对部分生产企业有着重大的影响,假设某企业的日利润f(x)与API值x的函数关系为:f(x)=$\left\{\begin{array}{l}40(x≤150)\\ 15(x>150)\end{array}$(单位;万元),利用分层抽样的方式从监测的100天中选出5天,再从这5天中任取3天计算企业利润之和,求利润之和小于80万元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.对某校高二年级学生暑期参加社会实践次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社会实践的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如图:
分组频数频率
[10,15)200.25
[15,20)48n
[20,25)mp
[25,30)40.05
合计M1
(1)求出表中M,p及图中a的值;
(2)在所取样本中,从参加社会实践的次数不少于20次的学生中任选3人,记参加社会实践次数在区间[25,30)内的人数为X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F(1,0),且点P(1,$\frac{3}{2}$)在椭圆C上,O为坐标原点.
(1)求椭圆C的标准方程;
(2)设过定点T(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角,求直线l的斜率k的取值范围;
(3)过椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}-\frac{5}{3}}$=1上异于其顶点的任一点P,作圆O:x2+y2=$\frac{4}{3}$的两条切线,切点分别为M,N(M,N不在坐标轴上),若直线MN在x轴、y轴上的截距分别为m、n,证明:$\frac{1}{3{m}^{2}}$+$\frac{1}{{n}^{2}}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,△ABC是等边三角形,D为AC的中点,求证:
(1)平面C1BD⊥平面A1ACC1
(2)AB1∥平面C1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}是递增的等比数列,a1+a4=9,a2a3=8,则数列{an}的前n项和等于2n-1.

查看答案和解析>>

同步练习册答案