分析 (1)利用等差数列通项公式和等比数列性质列出方程组,求出首项和公差,由此能求出数列{an}的通项公式.
(2)由bn=2${\;}^{{a}_{n}}$+2n=2n+2n,利用分组求和法能求出数列{bn}的前n项和.
解答 解:(1)∵各项都不相等的等差数列{an},a6=6,又a1,a2,a4成等比数列.
∴$\left\{\begin{array}{l}{{a}_{6}={a}_{1}+5d=6}\\{({a}_{1}+d)^{2}={a}_{1}({a}_{1}+3d)}\\{d≠0}\end{array}\right.$,
解得a1=1,d=1,
∴数列{an}的通项公式an=1+(n-1)×1=n.
(2)∵bn=2${\;}^{{a}_{n}}$+2n=2n+2n,
∴数列{bn}的前n项和:
Sn=(2+22+23+…+2n)+2(1+2+3+…+n)
=$\frac{2(1-{2}^{n})}{1-2}$+2×$\frac{n(n+1)}{2}$
=2n+1-2+n2+n.
点评 本题考查数列的通项公式和前n项和公式的求法,是中档题,解题时要认真审题,注意分组求和法的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 80 m | B. | 20 m | C. | 40 m | D. | 50 m |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 3 | 4 | 5 | 6 |
| y | 2.5 | 3 | 4 | a |
| A. | 3 | B. | 3.15 | C. | 3.5 | D. | 4.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com