精英家教网 > 高中数学 > 题目详情
10.某人从甲地去乙地共走了500m,途经一条宽为x m的河流,该人不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品不掉在河里就能找到.已知该物品能被找到的概率为$\frac{24}{25}$,则河宽为(  )
A.80 mB.20 mC.40 mD.50 m

分析 本题考查的知识点是几何概型的意义,关键是要找出找到该物品的点对应的图形的长度,并将其和整个事件的长度代入几何概型计算公式进行求解.

解答 解:由已知易得:
l从甲地到乙=500
l途中涉水=x,
故物品遗落在河里的概率P=$\frac{x}{500}$=1-$\frac{24}{25}$=$\frac{1}{25}$,
∴x=20(m).
故选:B.

点评 本题考查的知识点是几何概型的意义,几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知f(x-1)=x2+4x-5,则f(x)的表达式是(  )
A.x2+6xB.x2+8x+7C.x2+2x-3D.x2+6x-10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.双曲线$\frac{{y}^{2}}{3}$-x2=1的两条渐近线的夹角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点A(-1,2),B(3,1),若直线ax-y-2=0与线段AB相交,则a的范围是(  )
A.[-4,1]B.[1,4]C.(-∞,-4]∪[1,+∞)D.(-∞,-1]∪[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知各项都不相等的等差数列{an},a6=6,又a1,a2,a4成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=2${\;}^{{a}_{n}}$+2n,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.直线3x+4y-12=0与两坐标轴的交点为A,B,其中点A在x轴上,点B在y轴上.
(1)求交点A和B的坐标;
(2)求以原点为圆心且与直线AB相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax2-(a+4)x+4.
(1)若对任意的x∈(0,1],都有f(x)>(a-1)x2恒成立,求实数a的取值范围;
(2)解不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设f'(x)是函数f(x)的导数,f''(x)是函数f'(x)的导数,若方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数f(x)的拐点.某同学经过探究发现:任何一个三次函数f(x)=ax3+bx2+cx+d(a≠0)都有拐点,任何一个三次函数都有对称中心,且拐点就是对称中心,
设函数g(x)=x3-3x2+4x+2,利用上述探究结果
计算:$g(\frac{1}{10})+g(\frac{2}{10})+g(\frac{3}{10})+…+g(\frac{19}{10})$=76.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.曲线$y=lnx-\frac{2}{x}$在x=1处的切线的倾斜角为α,则cosα+sinα的值为(  )
A.$\frac{{2\sqrt{10}}}{5}$B.$\frac{{\sqrt{10}}}{10}$C.$\frac{{\sqrt{10}}}{5}$D.$\frac{{3\sqrt{10}}}{10}$

查看答案和解析>>

同步练习册答案