精英家教网 > 高中数学 > 题目详情
15.直线3x+4y-12=0与两坐标轴的交点为A,B,其中点A在x轴上,点B在y轴上.
(1)求交点A和B的坐标;
(2)求以原点为圆心且与直线AB相切的圆的方程.

分析 (1)分别令x=0、y=0代入3x+4y-12=0即可求出B、A的坐标,
(2)利用圆心(0,0)到直线的距离等于半径,即可求出圆的标准方程.

解答 解:(1)令x=0代入3x+4y-12=0得,y=3,∴B(0,3);
令y=0代入3x+4y-12=0得,x=4,∴A(4,0);
(2)圆心(0,0)到直线3x+4y-12=0的距离,
d=r=$\frac{|3×0+4×0-12|}{\sqrt{{3}^{2}{+4}^{2}}}$=$\frac{12}{5}$,
所以圆的方程为:x2+y2=$\frac{144}{25}$.

点评 本题考查了直线与坐标轴的交点问题以及直线与圆相切的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知定义在(-1,1)上的函数f(x)满足:对任意x,y∈(-1,1)都有f(x)+f(y)=f(x+y).
(Ⅰ)求证:函数f(x)是奇函数;
(Ⅱ)如果当x∈(-1,0]时,有f(x)<0,试判断f(x)在(-1,1)上的单调性,并用定义证明你的判断;
(Ⅲ)在(Ⅱ)的条件下,若a-8x+1>0对满足不等式f(x-$\frac{1}{2}$)+f($\frac{1}{4}$-2x)<0的任意x恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.用秦九韶算法求多项式f(x)=x6-5x5+6x4+x2+0.3x+2,当x=-2时,v1的值为(  )
A.1B.7C.-7D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知空间四边形ABCD的两条对角线的长AC=6,BD=8,AC与BD所成的角为30o,E,F,G,H分别是AB,BC,CD,DA的中点,求四边形EFGH的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某人从甲地去乙地共走了500m,途经一条宽为x m的河流,该人不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品不掉在河里就能找到.已知该物品能被找到的概率为$\frac{24}{25}$,则河宽为(  )
A.80 mB.20 mC.40 mD.50 m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.对于函数f(x)=ex-x在区间[1,2]上的最值,下列描述正确的是(  )
A.最小值为e-1,没有最大值B.最大值为e2-2,没有最小值
C.既没有最大值,也没有最小值D.最小值为e-1,最大值为e2-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.一个盒子中装有5个红球,3个黄球,2个黑球,每次任取一个球,观察其颜色后放回,如此继续,求在取得黄球之前取得红球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)的定义域为R,M为常数.若p:对?x∈R,都有f(x)≥M;q:M是函数f(x)的最小
值,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数$f(x)=\frac{x}{2}+ln\sqrt{x}$在某区间[a,b]上的值域为[ta,tb],则t的取值范围($\frac{1}{2}$,$\frac{1+e}{2e}$).

查看答案和解析>>

同步练习册答案