精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)的定义域为R,M为常数.若p:对?x∈R,都有f(x)≥M;q:M是函数f(x)的最小
值,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 根据充分必要条件的定义判断即可.

解答 解:由p:对?x∈R,都有f(x)≥M,推不出M是最小值,比如x2≥-1,故充分性不成立;
由q:M是函数f(x)的最小值,推出p:对?x∈R,都有f(x)≥M;必要性成立,
故选:B.

点评 本题考查了充分必要条件,考查函数的最值的定义,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=a|x+1|-|x-1|,a≥1.
(Ⅰ)当a=1时,解不等式f(x)<1;
(Ⅱ)若实数a的取值范围是[3,4],求f(x)的图象与直线y=2所围成的三角形的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.直线3x+4y-12=0与两坐标轴的交点为A,B,其中点A在x轴上,点B在y轴上.
(1)求交点A和B的坐标;
(2)求以原点为圆心且与直线AB相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知$cos(α+\frac{2}{3}π)=\frac{4}{5},-\frac{π}{2}<α<0$,则$sin(α+\frac{π}{3})+sinα$等于(  )
A.$-\frac{{4\sqrt{3}}}{5}$B.$-\frac{{3\sqrt{3}}}{5}$C.$\frac{{3\sqrt{3}}}{5}$D.$\frac{{4\sqrt{3}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设f'(x)是函数f(x)的导数,f''(x)是函数f'(x)的导数,若方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数f(x)的拐点.某同学经过探究发现:任何一个三次函数f(x)=ax3+bx2+cx+d(a≠0)都有拐点,任何一个三次函数都有对称中心,且拐点就是对称中心,
设函数g(x)=x3-3x2+4x+2,利用上述探究结果
计算:$g(\frac{1}{10})+g(\frac{2}{10})+g(\frac{3}{10})+…+g(\frac{19}{10})$=76.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知一个多面体的三视图如图示:其中正视图与侧视图都是边长为1的等腰直角三角形,俯视图是边长为1的正方形,若该多面体的顶点都在同一个球面上,则该球的表面积为3π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知i是虚数单位,复数(2+i)2的共轭复数为(  )
A.3-4iB.3+4iC.5-4iD.5+4i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设a,b∈R,函数$f(x)=\frac{1}{3}{x^3}+a{x^2}+bx+1$,g(x)=ex(e为自然对数的底数),且函数f(x)的图象与函数g(x)的图象在x=0处有公共的切线.
(Ⅰ)求b的值;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)若g(x)>f(x)在区间(-∞,0)内恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知命题p:“函数$f(x)={2^{{x^2}-2x}}+{m^2}-\frac{5m}{2}+\frac{1}{2}$在R上有零点”,命题q:函数f(x)=$\frac{2}{x-m}$在区间(1,+∞)内是减函数,若p∧q为真命题,则实数m的取值范围为[$\frac{1}{2}$,1].

查看答案和解析>>

同步练习册答案