精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,⊙M过原点且与坐标轴交于A(a,0),B(0,a)两点,其中a>0.已知直线x+y-2=0截⊙M的弦长为
6
,则a为(  )
A、
7
4
B、
7
2
C、
7
2
D、
7
考点:直线与圆相交的性质
专题:直线与圆
分析:由题意可得圆心M(
a
2
a
2
),半径为r=
2
2
a,再求得圆心M到直线x+y-2=0的距离d的值,再利用弦长公式求得a的值.
解答: 解:由,⊙M过原点且与坐标轴交于A(a,0),B(0,a)两点,其中a>0,
可得圆心M(
a
2
a
2
),半径为r=
(
a
2
-0)
2
+(
a
2
-0)
2
=
2
2
a.
由于圆心M到直线x+y-2=0的距离为d=
|
a
2
+
a
2
-2|
2
,直线x+y-2=0截⊙M的弦长为
6
,且满足d2+(
6
2
)
2
=r2
由此求得a=
7
4

故选:A.
点评:本题主要考查直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l的参数方程为
x=1+2t
y=
1
2
-t
,曲线C的参数方程为
x=2cosθ
y=sinθ
,设直线l与曲线C交于两点A,B.
(1)求|AB|;
(2)设P为曲线C上的一点,当△ABP的面积取最大值时,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个简单几何体的主视图,左视图如图所示,则其俯视图不可能为(  )
A、长方形B、直角三角形
C、圆D、椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:

在面积为2的等腰直角△ABC中,E,F分别为直角边AB,AC的中点,点P在线段EF上,则
PB
PC
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,且a≠1,设命题p:0<a<1;q:方程ax2-x+
1
2
=0有两个不等的实数根.若“p∧q”为假命题,“p∨q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=2,BC=1,AC=
3
,等边△DEF三顶点D、E、F分别在AB、BC、AC上,sin∠FEC=
2
7
7
,求△DEF的边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A、B、C所对的边分别为a、b、c,有下列命题:
①若ab>c2,则C<
π
3

②若a+b>2c,则C<
π
3

③若(a+b)c<2ab,则C>
π
2

④若a2+b2=c2,则C<
π
2

其中正确的命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},如果数列{bn}满足b1=a1,bn=an+an-1(n≥2,n∈N*),则称数列{bn}是数列{an}的“生成数列”.
(1)若数列{an}的通项为an=n,写出数列{an}的“生成数列”{bn}的通项公式;
(2)若数列{cn}的通项为cn=2n+b(其中b是常数),试问数列{cn}的“生成数列”{qn}是否是等差数列,请说明理由;
(3)已知数列{dn}的通项为dn=2n+n,求数列{dn}的“生成数列”{pn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为A,B,C的对边,若2sinB=sinA+sinC,B=30°且S△ABC=
3
2
,则b=
 

查看答案和解析>>

同步练习册答案