精英家教网 > 高中数学 > 题目详情
在△ABC中,AB=2,BC=1,AC=
3
,等边△DEF三顶点D、E、F分别在AB、BC、AC上,sin∠FEC=
2
7
7
,求△DEF的边长.
考点:解三角形
专题:解三角形
分析:由题意画出图形,设等边三角形DEF的边长为x,由已知得到∠BDE=∠FEC,在三角形△DEF中由正弦定理列式求得x的值.
解答: 解:如图,

在△ABC中,∵BC=1,AB=2,AC=
3

∴∠ACB=90°,且∠ABC=60°,
设△DEF的边长为x,
由sin∠FEC=
2
7
7
,可得cos∠FEC=
21
7

在Rt△FEC中可得CE=
21
7
x

故EB=1-CF=1-
21
7
x

在△BDE中,∠BDE=180°-∠DBE-∠BED
=120°-(180°-∠DEF-∠FEC)
=120°-(180°-60°-∠FEC)
=∠FEC.
由正弦定理得:
DE
sin∠DBE
=
EB
sin∠BDE
,即
x
sin60°
=
x
3
2
=
1-
21
7
x
2
7
7
,解得:x=
21
10
点评:本题考查了解三角形,考查了正弦定理及三角形内角和定理的应用,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知PA⊥矩形ABCD所在的平面,E,F分别为AB,PC的中点,
(1)证明:EF∥平面PAD;
(2)若PA=AD,求证:EF⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

设曲线C的参数方程为
x=2+3cosθ
y=-1+3sinθ
(θ为参数)
,直线l的极坐标方程为3ρcosθ+4ρsinθ+3=0,则曲线C上到直线l的距离为2的点有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①不等式(m-1)x2-(1-m)x+m>0对任意实数x都成立,则实数m的范围是m>1;
②如果实数x,y满足(x-2)2+y2=3,则
y
x
的最大值为
3

③等差数列{an}的前n项和为Sn,若S13>0,S14<0,则S7为Sn的最大值;
④若0<x<
1
2
,则x
1-4x2
的最大值是
1
4

其中正确的命题序号是
 
(把所有正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,⊙M过原点且与坐标轴交于A(a,0),B(0,a)两点,其中a>0.已知直线x+y-2=0截⊙M的弦长为
6
,则a为(  )
A、
7
4
B、
7
2
C、
7
2
D、
7

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c.已知a2-c2=b(b-c).
(Ⅰ)求角A的大小;
(Ⅱ)设函数f(x)=sin(x-A)+sinx-m,若函数f(x)在[0,π]上有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若A
 
2
n
>6C
 
4
n
,则正整数n的取值集合为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:若ac2>bc2,则a>b;命题q:已知直线n在平面α内的射影为m,若直线a⊥m,则直线a⊥n.则下列命题是真命题的是(  )
A、p∧q
B、(¬p)∧(¬q)
C、(¬p)∧q
D、p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α的终边经过点P(
3
,-1)
则有(  )
A、cosα=-
1
2
B、sinα+cosα=2
C、tanα+cotα=1
D、cosα+tanα=
3
6

查看答案和解析>>

同步练习册答案