精英家教网 > 高中数学 > 题目详情
已知A∈α,P∉α,
PA
=(-
3
2
1
2
2
),平面α的一个法向量
n
=(0,-
1
2
,-
2
),则直线PA与平面α所成的角为(  )
A、30°B、45°
C、60°D、150°
考点:用空间向量求直线与平面的夹角
专题:空间位置关系与距离
分析:设直线PA与平面α所成的角为θ.利用sinθ=|cos
PA
n
|=
|
PA
n
|
|
PA
||
n
|
即可得出.
解答: 解:设直线PA与平面α所成的角为θ.
则sinθ=|cos
PA
n
|=
|
PA
n
|
|
PA
||
n
|
=
1
4
+2
1+2
1
4
+2
=
3
2

∵θ∈[0°,90°].
∴θ=60°.
故选:C.
点评:本题考查了利用向量的夹角公式求线面角、数量积运算及其模的计算公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=esinx(-π≤x≤π)的大致图象为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程ρ=2sinθ,直线l的参数方程
x=3+
2
2
t
y=
2
2
t
(t为参数),以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系;
(1)求曲线C与直线l的直角坐标方程.
(2)若M、N分别为曲线C与直线l上的两个动点,求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

有50件产品,编号1-50,现在从中抽取5件检验,用系统抽样方法确定所抽的编号为(  )
A、5,10,15,20,25
B、5,8,31,36,41
C、5,15,25,35,45
D、2,14,26,38,50

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=-x2+ax-
a
4
+
1
2
,x∈[0,1],
(1)求f (x)的最大值g(a);
(2)求g(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆C:
x2
8
+
y2
4
=1的两个焦点,P为椭圆C上的一点,如果△PF1F2是直角三角形,这样的点P有(  )个.
A、8B、6C、4D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,若E是B1D1的中点,则直线BE垂直于(  )
A、AC
B、BD
C、A1D
D、A1D1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(1,
sinα
sin(α+2β)
),B(
sinα
sin(α-2β)
-2,1),且
OA
OB
=0,sinβ≠0,sinα-kcosβ=0,则k=(  )
A、
2
B、-
2
C、
2
-
2
D、以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

方程2x2+y2-4x+2y+3=0表示的曲线是
 

查看答案和解析>>

同步练习册答案