精英家教网 > 高中数学 > 题目详情
1.函数h(x)=2sin(2x+$\frac{π}{6}$),函数f(x)=2cos(2x-$\frac{2π}{3}$)可由h(x)经过(  )的变换得到.
A.向右平移$\frac{π}{6}$个单位B.向左平移$\frac{π}{6}$个单位
C.向右平移$\frac{π}{3}$个单位D.向左平移$\frac{π}{3}$个单位

分析 化余弦为正弦,然后直接利用三角函数的图象平移得答案.

解答 解:∵f(x)=2cos(2x-$\frac{2π}{3}$)=2sin(2x$-\frac{2π}{3}+\frac{π}{2}$)=2sin(2x-$\frac{π}{3}$+$\frac{π}{6}$)=2sin[2(x-$\frac{π}{6}$)$+\frac{π}{6}$],
∴函数f(x)=2cos(2x-$\frac{2π}{3}$)可由h(x)=2sin(2x+$\frac{π}{6}$)向右平移$\frac{π}{6}$个单位得到.
故选:A.

点评 本题考查三角函数的诱导公式的运用,考查了三角函数的图象平移,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=(1+a)lnx,g(x)=ax-$\frac{1}{x}$(a>0).
(1)若与f(x)的图象切于点A(1,f(1))的直线与函数g(x)的图象相切,求实数a的值;
(2)设F(x)=g(x)-f(x),若对任意a∈(1,3),x1,x2∈[1,3],恒有(m-ln3)a-ln3>|F(x1)-F(x2)|成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知2cos(π-x)+3cos($\frac{π}{2}$-x)=0,则tan2x=$\frac{12}{5}$,sin2x=$\frac{12}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心C在l上.若圆C上存在点M,使|MA|=2|MO|,则圆心C的横坐标a的取值范围为(  )
A.[0,$\frac{12}{5}$]B.(0,$\frac{12}{5}$)C.(1,3)D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设x、y满足$\left\{\begin{array}{l}2x+y≥4\\ x-y≥-1\\ x-2y≤2\end{array}\right.$,则z=x+y(  )
A.有最小值2,最大值3B.有最大值3,无最大值
C.有最小值2,无最大值D.既无最小值,也无最大值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设复数z满足(1-2i)z=3+4i,则z=(  )
A.1-2iB.-1+2iC.2+iD.-2+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.给定正奇数n(n≥5),数列{an}:a1,a2,…an是1,2,…,n的一个排列,定义E(a1,a2,…an=|a1-1|+|a2-2|+…+|an-n|为数列{an}:a1,a2,…an的位差和.若位差和E(a1,a2,…an)=4,则满足条件的数列{an}:a1,a2,…an的个数为$\frac{(n-2)(n+3)}{2}$;  (用n表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.函数f(x)=x3+(a-1)x2-(a+1)x-a.
(1)若函数f(x)在x=1时的切线斜率为-1,求函数f(x)的解析式.
(2)若对任意实数a∈[-1,1],函数f(x)在(-∞,m)和(n,+∞)上都是增函数,求m与n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x-1-lnx
(1)求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)求函数f(x)的极值.

查看答案和解析>>

同步练习册答案