精英家教网 > 高中数学 > 题目详情
1.与-50°角终边相同的角的集合为{β|β=18°+k•360°,k∈Z}.

分析 直接由终边相同角的概念得答案.

解答 解:∵与-50°角终边相同的角相差360°的整数倍,
∴与-50°角终边相同的角的集合为A={β|β=-50°+k•360°,k∈Z}.
故答案为:{β|β=18°+k•360°,k∈Z}.

点评 本题考查了终边相同角的概念,是基础的会考题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)在(-∞,+∞)上是奇函数,若f(2)=7,则f(-2)=-7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax3+2x-a,
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若a=n且n∈N*,设xn是函数fn(x)=nx3+2x-n的零点.
(i)证明:n≥2时存在唯一xn且${x}_{n}∈(\frac{n}{n+1},1)$;
(i i)若bn=(1-xn)(1-xn+1),记Sn=b1+b2+…+bn,证明:Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2+bx+c,集合A={x|x=f(x),x∈R},B={x|x=f(f(x)),x∈R}.
(1)证明:A⊆B;
(2)当A={-1,3}时,用列举法求集合B;
(3)当A为单元集时,求证:A=B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知对于任意两组正实数a1,a2,…an;b1,b2,…,bn.总有:
(a12+a22+…+an2)(b12+b22+…+bn2)≥(a1b1+a2b2+…+anbn2,当且仅当$\frac{{a}_{1}}{{b}_{1}}$=$\frac{{a}_{2}}{{b}_{2}}$=…=$\frac{{a}_{n}}{{b}_{n}}$时取等号,据此我们可以得到:正数a,b,c满足a+b+c=1,则$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$的最小值为(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某厂大量生产一种小零件,经抽样检验知道其次品率是1%,现把这种零件中6件装成一盒,那么该盒中恰好含一件次品的概率是(  )
A.($\frac{99}{100}$)2B.0.01
C.C${\;}_{6}^{1}$$\frac{1}{100}$•(1-$\frac{1}{100}$)5D.C${\;}_{6}^{2}$($\frac{1}{100}$)2•(1-$\frac{1}{100}$)4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若不等式(1-a)x2-4x+6的解集是{x|-3<x<1},b为何值时,ax2+bx+3≥0的解集为R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列算法语句的运行结果为(  )
N=1
S=0
DO
S=S+N
N=N+1
Loop  While  S<=10;
输出N-1.
A.5B.4C.11D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=tan(x-$\frac{π}{3}$)+tanx+tan(x+$\frac{π}{3}$)的最小正周期是(  )
A.$\frac{2π}{3}$B.πC.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

同步练习册答案