精英家教网 > 高中数学 > 题目详情
16.已知对于任意两组正实数a1,a2,…an;b1,b2,…,bn.总有:
(a12+a22+…+an2)(b12+b22+…+bn2)≥(a1b1+a2b2+…+anbn2,当且仅当$\frac{{a}_{1}}{{b}_{1}}$=$\frac{{a}_{2}}{{b}_{2}}$=…=$\frac{{a}_{n}}{{b}_{n}}$时取等号,据此我们可以得到:正数a,b,c满足a+b+c=1,则$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$的最小值为(  )
A.3B.6C.9D.12

分析 已知可得($\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$)(a+b+c)≥(1+1+1)2=9,即可得出结论.

解答 解:由已知可得($\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$)(a+b+c)≥(1+1+1)2=9,当且仅当a=b=c=$\frac{1}{3}$时取等号,
∵a+b+c=1,∴$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$的最小值为9.
故选:C.

点评 本题考查新定义,考查基本不等式的运用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在△ABC中,内角A、B、C的对边分别为a、b、c,且a>b,已知cosC=$\frac{4}{5}$,c=3$\sqrt{2}$,sinAcos2$\frac{B}{2}$+sinBcos2$\frac{A}{2}$=$\frac{\sqrt{2}+1}{2}$sinC.
(1)求a和b的值;
(2)求cos(B-C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,长方体ABCD-A1B1C1D1的AA1=1,底面ABCD的周长为4.
(1)当长方体ABCD-A1B1C1D1的体积最大时,求直线BA1与平面A1CD所成角;
(2)线段A1C上是否存在一点P,使得A1C⊥平面BPD,若有,求出P点的位置,没有请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某次足球赛共12支球队参加,分三个阶段进行.
(1)小组赛:经抽签分成甲、乙两组,每组6队进行单循环比赛,以几分及净胜球数取前两名;
(2)半决赛:甲组第一名与乙组第二名,乙组第一名与甲组第二名作主、客场交叉淘汰赛(每两队主、客场各赛一场)决出胜者;
(3)决赛:两个胜队参加决赛一场,决出胜负.
问:全部赛程共需比赛多少场?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.计算:log2$\sqrt{\frac{7}{72}}$+log26-$\frac{1}{2}$log228.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.与-50°角终边相同的角的集合为{β|β=18°+k•360°,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0$)的离心率是$\frac{\sqrt{2}}{2}$,A1,A2是椭圆E的长轴的两个端点(A2位于A1右侧),B是椭圆在y轴正半轴上的顶点,点F是椭圆E的右焦点,点M是x轴上位于A2右侧的一点,且$\frac{1}{|FM|}$是$\frac{1}{|{A}_{1}M|}$与$\frac{1}{|{A}_{2}M|}$的等差中项,|FM|=1.
(1)求椭圆E的方程以及点M的坐标;
(2)是否存在经过点(0,$\sqrt{2}$)且斜率为k的直线l与椭圆E交于不同的两点P和Q,使得向量$\overrightarrow{OP}$+$\overrightarrow{OQ}$与$\overrightarrow{{A}_{2}B}$共线?若存在,求出直线l的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知矩形ABCD中,AD=4,AB=6,点M在AD上,且MD=1,沿着MB将△AMB折起.

(1)当点A在平面BCDM上的投影在MB上时,求直线AC与平面BCDM所成角的正弦值;
(2)当点A在平面BCDM上的投影在DC上时,求平面ABC与平面AMD所成二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}是等差数列,Sn是它的前n项和,则数列$\left\{{\frac{S_n}{n}}\right\}$是等差数列.由此类比:数列{bn}是各项为正数的等比数列,Tn是它的前n项积,则数列{$\root{n}{{T}_{n}}$}为等比数列(写出一个正确的结论).

查看答案和解析>>

同步练习册答案