精英家教网 > 高中数学 > 题目详情
13.若不等式(1-a)x2-4x+6的解集是{x|-3<x<1},b为何值时,ax2+bx+3≥0的解集为R.

分析 不等式(1-a)x2-4x+6的解集是{x|-3<x<1},可得-3,1是一元二次方程(1-a)x2-4x+6的实数根利用根与系数的关系解得a=3.ax2+bx+3≥0即3x2+bx+3≥0,由于3x2+bx+3≥0的解集为R.可得△≤0,解出即可.

解答 解:不等式(1-a)x2-4x+6的解集是{x|-3<x<1},
∴-3,1是一元二次方程(1-a)x2-4x+6的实数根,∴-3+1=$\frac{4}{1-a}$,-3×1=$\frac{6}{1-a}$,
解得a=3.
∴ax2+bx+3≥0即3x2+bx+3≥0,
∵3x2+bx+3≥0的解集为R.
∴△=b2-36≤0,
∴-6≤b≤6.
∴b的取值范围是[-6,6].

点评 本题考查了一元二次不等式解集与判别式的关系、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,以椭圆上任一点与左,右焦点F1,F2为顶点的三角形的周长为4($\sqrt{2}$+1).
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线l1过原点O,直线l2与直线l1相交于点Q,|$\overrightarrow{OQ}$|=1,且l2⊥l1,直线l2与椭圆交于A,B两点,问是否存在这样的直线l2,使$\overrightarrow{AQ}$•$\overrightarrow{BQ}$=-1成立.若存在,求出直线l2的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某次足球赛共12支球队参加,分三个阶段进行.
(1)小组赛:经抽签分成甲、乙两组,每组6队进行单循环比赛,以几分及净胜球数取前两名;
(2)半决赛:甲组第一名与乙组第二名,乙组第一名与甲组第二名作主、客场交叉淘汰赛(每两队主、客场各赛一场)决出胜者;
(3)决赛:两个胜队参加决赛一场,决出胜负.
问:全部赛程共需比赛多少场?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.与-50°角终边相同的角的集合为{β|β=18°+k•360°,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0$)的离心率是$\frac{\sqrt{2}}{2}$,A1,A2是椭圆E的长轴的两个端点(A2位于A1右侧),B是椭圆在y轴正半轴上的顶点,点F是椭圆E的右焦点,点M是x轴上位于A2右侧的一点,且$\frac{1}{|FM|}$是$\frac{1}{|{A}_{1}M|}$与$\frac{1}{|{A}_{2}M|}$的等差中项,|FM|=1.
(1)求椭圆E的方程以及点M的坐标;
(2)是否存在经过点(0,$\sqrt{2}$)且斜率为k的直线l与椭圆E交于不同的两点P和Q,使得向量$\overrightarrow{OP}$+$\overrightarrow{OQ}$与$\overrightarrow{{A}_{2}B}$共线?若存在,求出直线l的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,已知$\overrightarrow{BC}$=3$\overrightarrow{BD}$,则$\overrightarrow{AD}$=(  )
A.$\frac{1}{3}$($\overrightarrow{AC}$+2$\overrightarrow{AB}$)B.$\frac{1}{3}$($\overrightarrow{AB}$+2$\overrightarrow{AC}$)C.$\frac{1}{4}$($\overrightarrow{AC}$+3$\overrightarrow{AB}$)D.$\frac{1}{4}$($\overrightarrow{AC}$+2$\overrightarrow{AB}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知矩形ABCD中,AD=4,AB=6,点M在AD上,且MD=1,沿着MB将△AMB折起.

(1)当点A在平面BCDM上的投影在MB上时,求直线AC与平面BCDM所成角的正弦值;
(2)当点A在平面BCDM上的投影在DC上时,求平面ABC与平面AMD所成二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算:${C}_{x+2}^{x-2}+{C}_{x+2}^{x-3}=\frac{1}{10}{A}_{x+3}^{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求下列函数的单调区间,并求[1,e]上的最值.
(1)f(x)=lnx-ax;
(2)f(x)=ax2-2lnx3
(3)f(x)=ex-ax-1,求单调区间.

查看答案和解析>>

同步练习册答案