精英家教网 > 高中数学 > 题目详情
5.在△ABC中,已知$\overrightarrow{BC}$=3$\overrightarrow{BD}$,则$\overrightarrow{AD}$=(  )
A.$\frac{1}{3}$($\overrightarrow{AC}$+2$\overrightarrow{AB}$)B.$\frac{1}{3}$($\overrightarrow{AB}$+2$\overrightarrow{AC}$)C.$\frac{1}{4}$($\overrightarrow{AC}$+3$\overrightarrow{AB}$)D.$\frac{1}{4}$($\overrightarrow{AC}$+2$\overrightarrow{AB}$)

分析 利用平面向量的三角形法则,将$\overrightarrow{AD}$用$\overrightarrow{AB},\overrightarrow{AC}$表示,找出正确答案.

解答 解:根据向量的三角形法则得到$\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{BD}=\overrightarrow{AB}+\frac{1}{3}\overrightarrow{BC}$=$\overrightarrow{AB}+\frac{1}{3}(\overrightarrow{AC}-\overrightarrow{AB})$=$\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}=\frac{1}{3}(2\overrightarrow{AB}+\overrightarrow{AC})$;
故选A.

点评 本题考查了向量的三角形法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点为F(1,0),M为椭圆的上顶点,O为坐标原点,且△OMF是等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在直线l交椭圆于P,Q两点,且使点F为△PQM的垂心(即三角形三条高线的交点)?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2+bx+c,集合A={x|x=f(x),x∈R},B={x|x=f(f(x)),x∈R}.
(1)证明:A⊆B;
(2)当A={-1,3}时,用列举法求集合B;
(3)当A为单元集时,求证:A=B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某厂大量生产一种小零件,经抽样检验知道其次品率是1%,现把这种零件中6件装成一盒,那么该盒中恰好含一件次品的概率是(  )
A.($\frac{99}{100}$)2B.0.01
C.C${\;}_{6}^{1}$$\frac{1}{100}$•(1-$\frac{1}{100}$)5D.C${\;}_{6}^{2}$($\frac{1}{100}$)2•(1-$\frac{1}{100}$)4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若不等式(1-a)x2-4x+6的解集是{x|-3<x<1},b为何值时,ax2+bx+3≥0的解集为R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1的两个焦点F1,F2,点M是椭圆上任意一点,过点F2作∠F1MF2的外角平分线的垂线交F1M的延长线于点P.
(1)求点P的轨迹方程;
(2)斜率为1的直线l交轨迹C于不同的两点A,B,若原点O在以线段AB为直径的圆外,求直线l的纵截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列算法语句的运行结果为(  )
N=1
S=0
DO
S=S+N
N=N+1
Loop  While  S<=10;
输出N-1.
A.5B.4C.11D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x+3,x>0}\\{{x}^{2}-4x+3,x≤0}\end{array}\right.$,不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立,则实数a的取值范围是(  )
A.(-∞,-2)B.(-∞,0)C.(0,2)D.(-2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.解关于a的方程:$\frac{-3}{a}$+$\frac{4}{12-a}$=1.

查看答案和解析>>

同步练习册答案