精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)在(-∞,+∞)上是奇函数,若f(2)=7,则f(-2)=-7.

分析 由已知结合奇函数的性质求得f(-2)的值.

解答 解:∵f(x)在(-∞,+∞)上是奇函数,且f(2)=7,
∴f(-2)=-f(2)=-7.
故答案为:-7.

点评 本题考查函数的奇偶性的性质,是基础的会考题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.在直角坐标系xoy中,曲线C1的参数方程为$\left\{{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}}$,(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为$ρsin(θ+\frac{π}{4})=4\sqrt{2}$.设P为曲线C1上的动点,则点P到C2上点的距离的最小值为3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知平面上的动点M(x,y)到两定点F1(-4,0),F2(-1,0)的距离之比为2.
(Ⅰ)试求动点M的轨迹方程;
(Ⅱ)已知点A(0,2),求∠F1AF2的平分线所在的直线AB的方程(其中点B是直线AB与x轴的交点);
(Ⅲ)在(Ⅱ)的条件下,若点C是轨迹M上异于A,B的任意一点,试求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(1,$\frac{\sqrt{3}}{2}$)且离心率为$\frac{\sqrt{3}}{2}$.
(1)求椭圆C的标准方程;
(2)过x轴上一点(m,0)作⊙O:x2+y2=1的切线l,交椭圆C于M、N两点,求|MN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,内角A、B、C的对边分别为a、b、c,且a>b,已知cosC=$\frac{4}{5}$,c=3$\sqrt{2}$,sinAcos2$\frac{B}{2}$+sinBcos2$\frac{A}{2}$=$\frac{\sqrt{2}+1}{2}$sinC.
(1)求a和b的值;
(2)求cos(B-C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知动圆过定点A(0,$\frac{1}{2}$),且在x轴上截得的弦MN的长为1,设动圆圆心的轨道为l.
(1)求动圆圆心的轨迹L的方程;
(2)已知直线y=a交曲线L于A、B两点,若曲线L上存在点C,使得∠ACB为直角,求a的取值范围;
(3)设轨迹L的焦点为F、A、B为轨迹L上的两个动点,且满足∠AFB=120°,过弦AB的中点M作直线y=-$\frac{1}{4}$的垂线MN,垂足为N,试求$\frac{|MN|}{|AB|}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,以椭圆上任一点与左,右焦点F1,F2为顶点的三角形的周长为4($\sqrt{2}$+1).
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线l1过原点O,直线l2与直线l1相交于点Q,|$\overrightarrow{OQ}$|=1,且l2⊥l1,直线l2与椭圆交于A,B两点,问是否存在这样的直线l2,使$\overrightarrow{AQ}$•$\overrightarrow{BQ}$=-1成立.若存在,求出直线l2的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知菱形ABCD的边长为3,∠B=60°,沿对角线AC折成一个四面体,使得平面ACD⊥平面ABC,则经过这个四面体所有顶点的球的表面积为(  )
A.15πB.$\frac{15π}{4}$C.$\sqrt{15}$ πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.与-50°角终边相同的角的集合为{β|β=18°+k•360°,k∈Z}.

查看答案和解析>>

同步练习册答案