14£®ÒÑÖªÍÖÔ²CµÄ·½³ÌΪ$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©£¬{F_1}£¬{F_2}$ΪÆä×ó¡¢ÓÒ½¹µã£¬eΪÀëÐÄÂÊ£¬PΪÍÖÔ²ÉÏÒ»¶¯µã£¬ÔòÓÐÈçÏÂ˵·¨£º
¢Ùµ±0£¼e£¼$\frac{{\sqrt{2}}}{2}$ʱ£¬Ê¹¡÷PF1F2Ϊֱ½ÇÈý½ÇÐεĵãPÓÐÇÒÖ»ÓÐ4¸ö£»
¢Úµ±e=$\frac{{\sqrt{2}}}{2}$ʱ£¬Ê¹¡÷PF1F2Ϊֱ½ÇÈý½ÇÐεĵãPÓÐÇÒÖ»ÓÐ6¸ö£»
¢Ûµ±$\frac{{\sqrt{2}}}{2}$£¼e£¼1ʱ£¬Ê¹¡÷PF1F2Ϊֱ½ÇÈý½ÇÐεĵãPÓÐÇÒÖ»ÓÐ8¸ö£»
ÒÔÉÏ˵·¨ÖÐÕýÈ·µÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®0B£®1C£®2D£®3

·ÖÎö ¸ù¾ÝÍÖÔ²µÄÀëÐÄÂʵÄȡֵ·¶Î§£¬µÃ³öÍÖÔ²µÄ¶ÌÖáµÄ¶¥µã¹¹³ÉµÄ½Ç¡ÏF1BF2µÄȡֵ·¶Î§£¬·Ö±ðÅжϣ¬Ê¹¡÷PF1F2Ϊֱ½ÇÈý½ÇÐεĵãP¸öÊý£®

½â´ð ½â£ºÈçͼËùʾ£¬Ø­BF1Ø­=a£¬Ø­OF1Ø­=c£¬Éè¡ÏBF1O=¦È£¬Ôòtan¦È=$\frac{c}{a}$=e£¬
¢ÙÖУ¬µ±ÍÖÔ²µÄÀëÐÄÂÊ0£¼e£¼$\frac{{\sqrt{2}}}{2}$ʱ£¬¼´0£¼tan¦È£¼$\frac{{\sqrt{2}}}{2}$£¬
¡à¦È¡Ê£¨0£¬$\frac{¦Ð}{4}$£©£¬Ôò¡ÏF1BF2£¾$\frac{¦Ð}{2}$£¬
Èô¡÷PF1F2Ϊֱ½ÇÈý½ÇÐÎʱ£¬Ö»ÄÜÊÇ¡ÏPF1F2ºÍ¡ÏPF2F1Ϊֱ½Çʱ³ÉÁ¢£¬
ËùÒÔÕâÑùµÄÖ±½ÇÈý½ÇÐΣ¬Ö»ÓÐËĸö£»
¢ÚÖУ¬µ±ÍÖÔ²µÄÀëÐÄÂÊe=$\frac{{\sqrt{2}}}{2}$ʱ£¬¼´tan¦È=$\frac{{\sqrt{2}}}{2}$£¬
¡à¦È=$\frac{¦Ð}{4}$£¬´Ëʱ¡ÏF1BF2=$\frac{¦Ð}{2}$£¬´Ëʱ¶ÔÓ¦µÄÖ±½ÇÈý½ÇÐι²ÓÐÁù¸ö£»
¢ÛÖУ¬µ±ÍÖÔ²µÄÀëÐÄÂÊ$\frac{{\sqrt{2}}}{2}$£¼e£¼1ʱ£¬¼´tan¦È£¾$\frac{{\sqrt{2}}}{2}$£¬Ôò¦È¡Ê£¨$\frac{¦Ð}{4}$£¬$\frac{¦Ð}{2}$£©£¬
¡à0£¼¡ÏF1BF2£¼$\frac{¦Ð}{2}$£¬´Ëʱ¶ÔÓ¦µÄÖ±½ÇÈý½ÇÐι²Óа˸ö£¬
¹ÊÑ¡D£®

µãÆÀ ÌâÖ÷Òª¿¼²éÁËÍÖÔ²µÄ¼¸ºÎÐÔÖÊÎÊÌ⣬ÆäÖнâ´ðÖÐÉæ¼°ÍÖÔ²µÄ±ê×¼·½³Ì¼°Æä¼òµ¥µÄ¼¸ºÎÐÔÖÊ£¬ÍÖÔ²µÄÀëÐÄÂʵÈ֪ʶµãµÄ×ۺϿ¼²é£¬×ÅÖØ¿¼²éÁËѧÉú·ÖÎöÎÊÌâºÍ½â´ðÎÊÌâµÄÄÜÁ¦£¬ÒÔ¼°ÊýÐνáºÏ˼ÏëµÄÓ¦Óã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=$\frac{2}{\sqrt{1+3si{n}^{2}¦È}}$£¬ÔòCÉϵĵ㵽ֱÏßx-2y-4$\sqrt{2}$=0µÄ¾àÀëµÄ×îСֵΪ$\frac{2\sqrt{10}}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Éèf£¨x£©Îª¿Éµ¼º¯ÊýÇÒÂú×ã$\underset{lim}{¡÷x¡ú0}$$\frac{f£¨1+2¡÷x£©-f£¨1-¡÷x£©}{¡÷x}$=3£¬Ôòº¯Êýy=f£¨x£©Í¼ÏóÉÏÔڵ㣨1£¬f£¨1£©´¦µÄÇÐÏßµÄÇãб½ÇΪ$\frac{¦Ð}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Èôº¯Êýy=f£¨x£©µÄͼÏóÉÏ´æÔÚÁ½¸öµãA¡¢B¹ØÓÚÔ­µã¶Ô³Æ£¬Ôò³Æµã¶Ô[A£¬B]Ϊy=f£¨x£©µÄ¡°ÓÑÇéµã¶Ô¡±£¬µã¶Ô[A£¬B]Óë[B£¬A]¿É¿´×÷ͬһ¸ö¡°ÓÑÇéµã¶Ô¡±£¬Èôº¯Êýf£¨x£©=$\left\{\begin{array}{l}2£¬x£¼0\\-{x^3}+6{x^2}-9x+a£¬x¡Ý0\end{array}\right.$Ç¡ºÃÓÐÁ½¸ö¡°ÓÑÇéµã¶Ô¡±£¬ÔòʵÊýaµÄֵΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÇóÏÂÁк¯ÊýµÄ×îÖµ£º
£¨1£©f£¨x£©=x3+2x£¬x¡Ê[-1£¬1]
£¨2£©f£¨x£©=£¨x-1£©£¨x-2£©2£¬x¡Ê[0£¬3]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®°Ñ¶þÏîʽ${£¨\sqrt{x}+\frac{1}{{2\root{4}{x}}}£©^8}$µÄÕ¹¿ªÊ½ÖÐËùÓеÄÏîÖØÐÂÅųÉÒ»ÁУ¬ÔòÆäÖÐÓÐÀíÏî¶¼»¥²»ÏàÁڵĸÅÂÊΪ$\frac{5}{12}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®$\sqrt{1+sin6}$+$\sqrt{1-sin6}$=£¨¡¡¡¡£©
A£®2sin3B£®-2sin3C£®2cos3D£®-2cos3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÇóÏÂÁоØÕóµÄÄæ¾ØÕó£®
£¨1£©$£¨\begin{array}{l}{1}&{0}&{0}&{0}\\{2}&{1}&{0}&{0}\\{3}&{2}&{1}&{0}\\{4}&{3}&{2}&{1}\end{array}£©$£¬
£¨2£©$£¨\begin{array}{l}{3}&{-3}&{4}\\{2}&{-3}&{4}\\{0}&{-1}&{1}\end{array}£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èçͼ£¬ÒÑÖª¡÷ABCÖУ¬µãMÔÚÏß¶ÎACÉÏ£¬µãPÔÚÏß¶ÎBMÉÏ£¬ÇÒÂú×ã$\frac{AM}{MC}$=$\frac{MP}{PB}$=2£¬Èô|${\overrightarrow{AB}}$|=2£¬|${\overrightarrow{AC}}$|=3£¬¡ÏBAC=120¡ã£¬Ôò$\overrightarrow{AP}$•$\overrightarrow{BC}$µÄֵΪ-2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸