精英家教网 > 高中数学 > 题目详情
14.函数f(x)=x2+1在点(1,2)处的切线斜率为(  )
A.1B.2C.3D.4

分析 求出原函数的导函数,在导函数中取x=1得答案.

解答 解:由f(x)=x2+1,得f′(x)=2x,
∴f′(1)=2×1=2,
∴函数f(x)=x2+1在点(1,2)处的切线斜率为2.
故选:B.

点评 本题考查了利用导数研究过曲线上某点的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.用两种或两种以上的方法证明:|x+$\frac{1}{x}$|≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.7名班委中有A,B,C三人,有7中不同的职务,现对7名班委进行职务具体分工.
(1)若正、副班长两职只能从A、B、C三人中选两人担任,有多少种分工方案?
(2)若正、副班长两职至少要选A、B、C三人中的一人担任,有多少种分工方案?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则a,b的值分别为1,1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(文)已知函数f(x)=k(x-1)ex+x2
(1)求导函数f′(x);
(2)当k=-$\frac{1}{e}$时,求函数f(x)在点(1,1)处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=lnx-ax+$\frac{1-a}{x}$-1(a∈R)
(I)当a=-1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(II)当0≤a<$\frac{1}{2}$时,讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知曲线y=x3-x在点(x0,y0)处的切线平行于直线2x-y-2=0,则x0=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=$\frac{1}{b}$eax的图象在x=0处的切线l与圆C:x2+y2=1相离,则P(a,b)与圆C的位置关系是(  )
A.在圆内B.在圆外C.在圆上D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=alnx+bx,g(x)=x2
(1)若f(x)在点(1,f(1))处的切线方程是y=3x-4,求a,b的值.
(2)若f(1)=g(1),f′(1)=g′(1),是否存在实数k和m,使得不等式f(x)≤kx+m,g(x)≥kx+m都在各自定义域内恒成立,若存在,求出k和m的值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案