精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的一个焦点与抛物线y2=4
3
x
的焦点F重合,且椭圆短轴的两个端点与F构成正三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点(1,0)的直线l与椭圆交于不同两点P、Q,试问在x轴上是否存在定点E(m,0),使
PE
QE
恒为定值?若存在,求出E的坐标及定值;若不存在,请说明理由.
(Ⅰ)由题意知抛物线的焦点F(
3
,0)
,∴c=
3
…(1分)
又∵椭圆的短轴的两个端点与F构成正三角形,∴b=1,
∴椭圆的方程为
x2
4
+y2=1
…(3分)
(Ⅱ)当直线l的斜率存在时,设其斜率为k,则l的方程为:y=k(x-1)
代入椭圆方程,消去y,可得(4k2+1)x2-8k2x+4k2-4=0
设P(x1,y1),Q(x2,y2),则x1+x2=
8k2
4k2+1
 ,x1x2=
4k2-4
4k2+1
…(5分)
PE
=(m-x1,-y1),
QE
= (m-x2,-y2)

PE
QE
=(m-x1)(m-x2)+y1y2
=m2-m(x1+x2)+x1x2+y1y2=m2-m(x1+x2)+x1x2+k2(x1-1)(x2-1)=m2-m
8k2
4k2+1
+
4k2-4
4k2+1
+k2(
4k2-4
4k2+1
-
8k2
4k2+1
+1)
=
(4m2-8m+1)k2+(m2-4)
4k2+1
…(7分)
=
(4m2-8m+1)(k2+
1
4
)+(m2-4)-
1
4
(4m2-8m+1)
4k2+1
=
1
4
(4m2-8m+1)+
2m-
17
4
4k2+1
…(9分)
2m-
17
4
=0
,即m=
17
8
时,
PE
QE
为定值
33
64
…(10分)
当直线l的斜率不存在时,P(1,
3
2
),Q(1,-
3
2
)

E(
17
8
,0)
可得
PE
=(
9
8
,-
3
2
) ,
QE
=(
9
8
3
2
)
,∴
PE
QE
=
81
64
-
3
4
=
33
64

综上所述,当E(
17
8
,0)
时,
PE
QE
为定值
33
64
…(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点分别为F1,F2,左顶点为A,若|F1F2|=2,椭圆的离心率为e=
1
2

(Ⅰ)求椭圆的标准方程,
(Ⅱ)若P是椭圆上的任意一点,求
PF1
PA
的取值范围
(III)直线l:y=kx+m与椭圆相交于不同的两点M,N(均不是长轴的顶点),AH⊥MN垂足为H且
AH
2
=
MH
HN
,求证:直线l恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点F(-c,0)是长轴的一个四等分点,点A、B分别为椭圆的左、右顶点,过点F且不与y轴垂直的直线l交椭圆于C、D两点,记直线AD、BC的斜率分别为k1,k2
(1)当点D到两焦点的距离之和为4,直线l⊥x轴时,求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率是
3
2
,且经过点M(2,1),直线y=
1
2
x+m(m<0)
与椭圆相交于A,B两点.
(1)求椭圆的方程;
(2)当m=-1时,求△MAB的面积;
(3)求△MAB的内心的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•威海二模)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
6
3
,过右焦点做垂直于x轴的直线与椭圆相交于两点,且两交点与椭圆的左焦点及右顶点构成的四边形面积为
2
6
3
+2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点M(0,2),直线l:y=1,过M任作一条不与y轴重合的直线与椭圆相交于A、B两点,若N为AB的中点,D为N在直线l上的射影,AB的中垂线与y轴交于点P.求证:
ND
MP
AB
2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F,过F作y轴的平行线交椭圆于M、N两点,若|MN|=3,且椭圆离心率是方程2x2-5x+2=0的根,求椭圆方程.

查看答案和解析>>

同步练习册答案