精英家教网 > 高中数学 > 题目详情
3.若{an}是等差数列,首项a1>0,a2016+a2017>0,a2016.a2017<0,则使前n项和Sn>0成立的最大自然数n是(  )
A.4031B.4033C.4034D.4032

分析 {an}是等差数列,首项a1>0,a2016+a2017>0,a2016.a2017<0,可得:a2016,>0,a2017<0,公差d<0.再利用等差数列的前n项和公式及其性质即可得出.

解答 解:∵{an}是等差数列,首项a1>0,a2016+a2017>0,a2016.a2017<0,
∴a2016>0,a2017<0,公差d<0.
∴S4032=$\frac{4032({a}_{1}+{a}_{4032})}{2}$=2016(a2016+a2017)>0,
S4033=$\frac{4033({a}_{1}+{a}_{4033})}{2}$=4033a2017<0.
使前n项和Sn>0成立的最大自然数n是4032.
故选:D.

点评 本题考查了等差数列的通项公式、前n项和公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.若双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1的右顶点与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F1重合
(1)若以原点O为圆心,|OF1|为半径的圆恰好与椭圆有且仅有2个交点,求椭圆的方程;
(2)在(1)的条件下,过该椭圆右焦点的直线交椭圆于A,B两点,若双曲线左顶点为M,直线AB的倾斜角θ,当θ∈[60°,90°]时,求$\overrightarrow{MA}$•$\overrightarrow{MB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.双曲线$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1的焦点坐标是(-4,0),(4,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线与椭圆$\frac{x^2}{25}+\frac{y^2}{16}=1$共焦点,它们的离心率之和为$\frac{21}{10}$,则双曲线的方程是(  )
A.$\frac{x^2}{25}-\frac{y^2}{16}=1$B.$\frac{x^2}{16}-\frac{y^2}{25}=1$C.$\frac{x^2}{5}-\frac{y^2}{4}=1$D.$\frac{x^2}{4}-\frac{y^2}{5}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线的方程为x2-$\frac{{y}^{2}}{3}$=1,则该双曲线的渐近线方程是(  )
A.y=±3xB.y=±$\frac{\sqrt{3}}{3}$xC.y=±$\sqrt{3}$xD.y=±2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.抛物线y2=ax的焦点恰好为双曲线x2-y2=2的右焦点,则a=8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.双曲线$\frac{{x}^{2}}{4}$-y2=1的实轴长是4,离心率的值是$\frac{\sqrt{5}}{2}$,焦点到渐近线的距离是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=|x|x+bx+c,给出下列4个命题:
①b=0,c>0时,方程f(x)=0只有一个实数根;
②c=0时,y=f(x)是奇函数;
③y=f(x)的图象关于点(0,c)对称;
④方程f(x)=0至多有2个不相等的实数根.
上述命题中的所有正确命题的序号是①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=1+(a+1)x-x2-x3
(1)a=0时,讨论f(x)在其R上的单调性.
(2)a=0时,写出f(x)在x=0处切线l的方程
(3)若a>0,0≤x≤1,求f(x)取得最大值时的x的值.

查看答案和解析>>

同步练习册答案