精英家教网 > 高中数学 > 题目详情
14.双曲线$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1的焦点坐标是(-4,0),(4,0).

分析 求得双曲线的a,b,由c=$\sqrt{{a}^{2}+{b}^{2}}$,求得c,进而得到双曲线的焦点坐标.

解答 解:双曲线$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1的a=2$\sqrt{3}$,b=2,
c=$\sqrt{{a}^{2}+{b}^{2}}$=4,
可得双曲线的焦点坐标为(-4,0),(4,0).
故答案为:(-4,0),(4,0).

点评 本题考查双曲线的焦点坐标,注意运用双曲线的基本量的关系,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\sqrt{3}$,若抛物线C2:y2=2px(p>0)的焦点到双曲线C1的渐近线的距离为$\sqrt{2}$,则抛物线C2的方程为(  )
A.y2=2$\sqrt{3}$xB.y2=4$\sqrt{3}$xC.y2=4xD.y2=6x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知F是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦点,若以F为圆心的圆C:x2+y2-4x+3=0与双曲线的渐近线相切,则双曲线的标准方程为$\frac{{x}^{2}}{3}$-y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.执行如图的程序框图,则输出的S=$\frac{25}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一条渐近线的方程为y=-$\sqrt{2}$x,则该双曲线的离心率为(  )
A.$\frac{3}{2}$B.$\frac{{\sqrt{6}}}{2}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若斜率为k(k≠0)的直线l与双曲线$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}=1$相交于两个不同的点M,N,且线段MN的中垂线与两坐标轴围成的三角形的面积为$\frac{81}{2}$,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知点F($\sqrt{5}$,0)是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,且点F到双曲线的渐近线的距离等于1,则此双曲线的渐近线方程为y=±$\frac{1}{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若{an}是等差数列,首项a1>0,a2016+a2017>0,a2016.a2017<0,则使前n项和Sn>0成立的最大自然数n是(  )
A.4031B.4033C.4034D.4032

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.椭圆经过$A(\sqrt{3},-2)$,$B(-2\sqrt{3},1)$,则该椭圆的标准方程为$\frac{{x}^{2}}{15}+\frac{{y}^{2}}{5}=1$.

查看答案和解析>>

同步练习册答案