精英家教网 > 高中数学 > 题目详情
5.已知F是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦点,若以F为圆心的圆C:x2+y2-4x+3=0与双曲线的渐近线相切,则双曲线的标准方程为$\frac{{x}^{2}}{3}$-y2=1.

分析 求得圆C的圆心和半径,可得c=2,即a2+b2=4,求出双曲线的渐近线方程,运用直线和圆相切的条件:d=r,解得b=1,a=$\sqrt{3}$,即可得到双曲线的方程.

解答 解:圆C:x2+y2-4x+3=0的圆心为(2,0),半径为1,
即有F(2,0),即c=2,即a2+b2=4,
双曲线的渐近线方程为y=±$\frac{b}{a}$x,
由直线和圆相切的条件,可得:
$\frac{2b}{\sqrt{{a}^{2}+{b}^{2}}}$=1,解得b=1,a=$\sqrt{3}$,
可得双曲线的标准方程为$\frac{{x}^{2}}{3}$-y2=1.
故答案为:$\frac{{x}^{2}}{3}$-y2=1.

点评 本题考查双曲线的方程的求法,注意运用直线和圆相切的条件:d=r,同时考查双曲线的渐近线方程的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}-5,x≥0}\\{3+{x}^{2},x<0}\end{array}\right.$,则f[f(2)]=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知双曲线${x^2}-\frac{y^2}{24}=1$的左右焦点分别为F1,F2,点P为双曲线左支上一点,且$|P{F_1}|=\frac{3}{5}|{F_1}{F_2}|$,则△PF1F2的面积是24.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1的右顶点与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F1重合
(1)若以原点O为圆心,|OF1|为半径的圆恰好与椭圆有且仅有2个交点,求椭圆的方程;
(2)在(1)的条件下,过该椭圆右焦点的直线交椭圆于A,B两点,若双曲线左顶点为M,直线AB的倾斜角θ,当θ∈[60°,90°]时,求$\overrightarrow{MA}$•$\overrightarrow{MB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,圆O是△ABC的外接圆,点D是劣弧$\widehat{BC}$的中点,连结AD并延长,与以C为切点的切线交于点P,求证:$\frac{PC}{PA}=\frac{BD}{AC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知F1(-1,0),F2(1,0)是椭圆C1与双曲线C2共同的焦点,椭圆的一个短轴端点为B,直线F1B与双曲线的一条渐近线平行,椭圆C1与双曲线C2的离心率分别为e1,e2,则e1+e2取值范围为(  )
A.[2,+∞)B.[4,+∞)C.(4,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{8}$=1的实轴长为(  )
A.6B.3C.4$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.双曲线$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1的焦点坐标是(-4,0),(4,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.双曲线$\frac{{x}^{2}}{4}$-y2=1的实轴长是4,离心率的值是$\frac{\sqrt{5}}{2}$,焦点到渐近线的距离是1.

查看答案和解析>>

同步练习册答案