分析 求得圆C的圆心和半径,可得c=2,即a2+b2=4,求出双曲线的渐近线方程,运用直线和圆相切的条件:d=r,解得b=1,a=$\sqrt{3}$,即可得到双曲线的方程.
解答 解:圆C:x2+y2-4x+3=0的圆心为(2,0),半径为1,
即有F(2,0),即c=2,即a2+b2=4,
双曲线的渐近线方程为y=±$\frac{b}{a}$x,
由直线和圆相切的条件,可得:
$\frac{2b}{\sqrt{{a}^{2}+{b}^{2}}}$=1,解得b=1,a=$\sqrt{3}$,
可得双曲线的标准方程为$\frac{{x}^{2}}{3}$-y2=1.
故答案为:$\frac{{x}^{2}}{3}$-y2=1.
点评 本题考查双曲线的方程的求法,注意运用直线和圆相切的条件:d=r,同时考查双曲线的渐近线方程的运用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [2,+∞) | B. | [4,+∞) | C. | (4,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 3 | C. | 4$\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com