分析 由题意可得c=$\sqrt{5}$,即a2+b2=5,求出双曲线的渐近线方程,运用点到直线的距离公式,求得b=1,解得a=2,进而得到渐近线方程.
解答 解:由题意可得c=$\sqrt{5}$,即a2+b2=5,
双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的渐近线方程为y=±$\frac{b}{a}$x,
由题意可得点F到双曲线的渐近线的距离为$\frac{\sqrt{5}b}{\sqrt{{a}^{2}+{b}^{2}}}$=b=1,
解得a=2,
则渐近线方程为y=±$\frac{1}{2}$x.
故答案为:y=±$\frac{1}{2}$x.
点评 本题考查双曲线的渐近线方程的求法,注意运用焦点到渐近线的距离以及双曲线的基本量的关系,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 3 | C. | 4$\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | $\sqrt{3}$ | C. | $\frac{3}{2}$ | D. | $\frac{\sqrt{6}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{25}-\frac{y^2}{16}=1$ | B. | $\frac{x^2}{16}-\frac{y^2}{25}=1$ | C. | $\frac{x^2}{5}-\frac{y^2}{4}=1$ | D. | $\frac{x^2}{4}-\frac{y^2}{5}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=±3x | B. | y=±$\frac{\sqrt{3}}{3}$x | C. | y=±$\sqrt{3}$x | D. | y=±2x |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ¬P:?x∈(-∞,1)∪(2,+∞),x2-2x-1>0 | B. | ¬P:?x∈[1,2],x2-2x-1>0 | ||
| C. | ¬P:?x∈(-∞,1)∪(2,+∞),x2-2x-1≤0 | D. | ¬P:?x∈[1,2],x2-2x-1≤0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com