精英家教网 > 高中数学 > 题目详情

已知函数,的最大值是1且其最小正周期为.
(1)求的解析式;
(2)已知,且,求的值.

(1)        (2) 

解析试题分析:.解:(1)因为,又A>0,所以
因为f(x)的最小正周期为T=

的解析式为
(2)由

,所以,
所以.
考点:三角函数的性质
点评:主要是考查了三角公式运用,以及三角函数性质的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期和最大值;
(2)求函数单调递增区间

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,在同一周期内,
时,取得最大值;当时,取得最小值.
(Ⅰ)求函数的解析式;
(Ⅱ)若时,函数有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)将函数化简成的形式;
(2)求的单调递减区间;
(3)求函数上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求的振幅,最小正周期,对称轴,对称中心。
(2)说明是由余弦曲线经过怎样变换得到。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

不查表求值: 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,记的内角的对边长分别为,若,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)写出函数的最小正周期和单调增区间;
(2)若函数的图象关于直线对称,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的定义域和值域;
(2)若的值;
(3)若曲线在点处的切线平行直线,求的值.

查看答案和解析>>

同步练习册答案