精英家教网 > 高中数学 > 题目详情

已知函数,在同一周期内,
时,取得最大值;当时,取得最小值.
(Ⅰ)求函数的解析式;
(Ⅱ)若时,函数有两个零点,求实数的取值范围.

(Ⅰ)(Ⅱ)

解析试题分析:(Ⅰ)由题意,         2分
 得
                  4分
(Ⅱ)由题意知,方程上有两个根.

                       12分
考点:三角函数解析式及求值
点评:函数式在求解时值由最值确定,值由周期确定,值可由函数过的特殊点代入求解,第二问中将函数零点转化为方程的根进而借助于三角函数图像性质求解

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)求函数单调递增区间;
(Ⅱ)若时,求的最小值以及取得最小值时的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的值;(2)求的最大值和最小值;
(3)求的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边分别为,且满足
(1)求角的大小;
(2)现给出三个条件:①;②;③.试从中选出两个可以确定的条件,写出你的选项,并以此为依据求出的面积(只需写出一个选定方案即可).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,函数的图象的两相邻对称轴间的距离为.
(1)求的值;
(2)若,求的值;
(3)若,且有且仅有一个实根,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数内的单调递增区间;
(2)求函数内的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其图象过点
(1)求的值;
(2)将函数图象上各点向左平移个单位长度,得到函数的图象,求函数上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,的最大值是1且其最小正周期为.
(1)求的解析式;
(2)已知,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最大值为M,最小正周期为T。
(1)求M、T;
(2)求函数的单调增区间。

查看答案和解析>>

同步练习册答案