精英家教网 > 高中数学 > 题目详情
在如图所示的几何体中,平面CDEF为正方形,平面ABCD为等腰梯形,AB∥CD,AC=
3
,AB=2BC=2,AC⊥FB.
(1)求证:AC⊥平面FBC;
(2)求四面体FBCD的体积.
考点:棱柱、棱锥、棱台的体积,平面与平面垂直的判定
专题:综合题,空间位置关系与距离
分析:(1)利用勾股定理的逆定理即可得到AC⊥CB,又AC⊥FB,利用线面垂直的判定定理即可证明;
(2)利用(1)的结论可得AC⊥CF,又CF⊥CD,利用线面垂直的判定定理即可得出FC⊥平面ABCD.利用等腰梯形的性质即可得出△BCD的面积,利用三棱锥的体积公式即可得出.
解答: (1)证明:在△ABC中,∵AC=
3
,AB=2,BC=1
,∴AC2+BC2=AB2
∴AC⊥BC.
∵AC⊥FB,BC∩FB=B,∴AC⊥平面FBC.
(2)解:∵AC⊥平面FBC,∴AC⊥FC.
∵CD⊥FC,AC∩CD=C,
∴FC⊥平面ABCD.
在等腰梯形ABCD中可得CB=DC=1,∴FC=1.
∴△BCD的面积S=
1
2
BD•
BC2-(
1
2
BD)
2
=
1
2
×
3
×
1
2
=
3
4

∴四面体FBCD的体积为:VF-BCD=
1
3
S•FC=
3
12
点评:熟练掌握勾股定理的逆定理、线面垂直的判定定理、等腰梯形的性质、三棱锥的体积公式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在非钝角△ABC中,C=
π
3
,则cos2A+cos2B的最小值为(  )
A、1-
2
2
B、
1
2
C、1-
2
4
D、1+
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

下列式子正确的是(  )
A、a2+
1
a2+1
≥1
B、sinx+
1
sinx
≥2(0<x<
π
2
C、
x
+
1
x
>2
D、x+
1
x
≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=8x,△ABC中,点A与抛物线的焦点重合,B,C在抛物线上,且△ABC是以角A为直角的等腰直角三角形,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦点在直线l:ρsin(θ+
π
4
=
2
)(原点为极点、x轴正半轴为极轴)上,右顶点到直线l的距离为
2
2
,则双曲线C的渐近线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心在直线l上.
(Ⅰ)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;
(Ⅱ)若圆C上存在唯一一点M,使MA=2MO,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

作出函数y=
1-|x|
|1-x|
的图象,并求其分段解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

小华参加学校创意社团,上交一份如图所示的作品:边长为2的正方形中作一内切圆⊙O,在⊙O内作一个关于正方形对角线对称的内接“十”字形图案.OA垂直于该“十”字形图案的一条边,点P为该边上的一个端点.记“十”字形图案面积为S,∠AOP=θ.试用θ表示S,并由此求出S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=alnx,f(x)=x3+x2+bx.
(1)若f(x)在区间[1,2]上不是单调函数,求实数b的范围;
(2)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求实数a的取值范围;
(3)当b=0时,设F(x)=
f(-x),x<1
g(x),x≥1
,对任意给定的正实数a,曲线y=F(x)上是否存在两点P,Q,使得△POQ是以O(O为坐标原点)为直角顶点的直角三角形,而且此三角形斜边中点在y轴上?请说明理由.

查看答案和解析>>

同步练习册答案