精英家教网 > 高中数学 > 题目详情
14.如图所示的程序框图,若输入m=8,n=3,则输出的S值为(  )
A.56B.336C.360D.1440

分析 执行程序框图,依次写出每次循环得到的s,k的值,k=5时,满足条件k<m-n+1,退出循环,输出s的值为336.

解答 解:执行程序框图,可得
m=8,n=3,
k=8,s=1
不满足条件k<m-n+1,s=8,k=7,
不满足条件k<m-n+1,s=56,k=6,
不满足条件k<m-n+1,s=336,k=5,
满足条件k<m-n+1,退出循环,输出s的值为336.
故选:B.

点评 本题主要考察了程序框图和算法,正确得到每次循环s的值是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知数列{an}满足a1=3,an+1an+an+1-an+1=0,n∈N*,则a2016=(  )
A.-2B.$-\frac{1}{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=tanx-1的定义域为$\left\{{x\left|{x≠\frac{π}{2}+kπ,k∈z}\right.}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知菱形ABCD的中心为O,∠BAD=$\frac{π}{3}$,AB=1,则($\overrightarrow{OA}$-$\overrightarrow{OB}$)•($\overrightarrow{AD}$+$\overrightarrow{AB}$)等于-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,三棱柱ABC-A1B1C1中,CC1⊥平面ABC,∠ACB=90°,BB1=3,AC=BC=2,D,E分别为AB,BC的中点,F为BB1上一点,且$\frac{BF}{F{B}_{1}}$=$\frac{2}{7}$.
(1)求证:平面CDF⊥平面A1C1E;
(2)求二面角C1-CD-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如表提供了工厂技术改造后某种型号设备的使用年限x和所支出的维修费用y(万元)的几组对照数据:
x(年)  3       4     5   6
y(万元)    2.5    3    4  4.5 
(1)若知道y对x呈线性相关关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=bx+a
(2)已知工厂技改前该型号设备使用10年的维修费用为9万元.试根据(1)求出的线性回归方程,预测该型号设备技改后使用10年的维修费用比技改前降低多少?
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=y-$\stackrel{∧}{b}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知复数z满足(3+4i)z=25,则z对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.一盒中装有除颜色外其余均相同的12个小球,从中随机取出1个球,取出红球的概率为$\frac{5}{12}$,取出黑球的概率为$\frac{1}{3}$,取出白球的概率为$\frac{1}{6}$,取出绿球的概率为$\frac{1}{12}$.求:
(1)取出的1个球是红球或黑球的概率;
(2)取出的1个球是红球或黑球或白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某人对一个地区人均工资x与该地区人均消费y进行统计调查,y与x有相关关系,得到线性回归方程为y=0.66x+1.562(单位:百元).若该地区人均消费水平为7.675百元,估计该地区人均消费额占人均工资收入的百分比约为(  )
A.66%B.72.3%C.67.3%D.83%

查看答案和解析>>

同步练习册答案