分析 画出图形,利用已知条件转化求解即可.
解答
解:由题意可得:
菱形ABCD的中心为O,∠BAD=$\frac{π}{3}$,AB=1,AC=$\sqrt{3}$,∠BAO=30°,
则($\overrightarrow{OA}$-$\overrightarrow{OB}$)•($\overrightarrow{AD}$+$\overrightarrow{AB}$)=$\overrightarrow{BA}$$•\overrightarrow{AC}$=$|\overrightarrow{BA}||\overrightarrow{AC}|cos150°$=$1×\sqrt{3}×(-\frac{\sqrt{3}}{2})$=-$\frac{3}{2}$.
故答案为:-$\frac{3}{2}$.
点评 本题考查向量在几何中的应用,数量积的运算,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | M=P | B. | M>P | C. | M<P | D. | 不能确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com