精英家教网 > 高中数学 > 题目详情
3.一盒中装有除颜色外其余均相同的12个小球,从中随机取出1个球,取出红球的概率为$\frac{5}{12}$,取出黑球的概率为$\frac{1}{3}$,取出白球的概率为$\frac{1}{6}$,取出绿球的概率为$\frac{1}{12}$.求:
(1)取出的1个球是红球或黑球的概率;
(2)取出的1个球是红球或黑球或白球的概率.

分析 由互斥事件的概率公式,即可计算.

解答 解:记事件A1={任取1球为红球};A2={任取1球为黑球};A3={任取1球为白球},A4={任取1球为绿球},
则P(A1)=$\frac{5}{12}$,P(A2)=$\frac{4}{12}$,P(A3)=$\frac{2}{12}$,P(A4)=$\frac{1}{12}$.
根据题意,知事件A1,A2,A3,A4彼此互斥.
由互斥事件的概率公式,得
(1)取出1球是红球或黑球的概率为P(A1∪A2)=P(A1)+P(A2)=$\frac{5}{12}$+$\frac{4}{12}$=$\frac{3}{4}$.
(2)取出1球是红球或黑球或白球的概率为P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3
=$\frac{5}{12}$+$\frac{4}{12}$+$\frac{2}{12}$=$\frac{11}{12}$.

点评 本题考查互斥事件的概率公式,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=exsinx.
(1)求函数f(x)的单调区间;
(2)如果对于任意的$x∈[0,\frac{π}{2}]$,f(x)≥kx恒成立,求实数k的取值范围;
(3)设函数F(x)=f(x)+ex•cosx,$x∈[-\frac{2015π}{2},\frac{2017π}{2}]$.过点$M(\frac{π-1}{2},0)$作函数F(x)的图象的所有切线,令各切点的横坐标构成数列{xn},求数列{xn}的所有项之和S的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图所示的程序框图,若输入m=8,n=3,则输出的S值为(  )
A.56B.336C.360D.1440

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求函数$f(x)={log_2}(2sinx-1)+\sqrt{\sqrt{2}+2cosx}$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.复数${(\frac{1-i}{{\sqrt{2}}})^2}=a+bi(a,b∈R,i$是虚数单位),则a的值为(  )
A.0B.1C.2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=3x+sinx-2cosx的图象在点A(x0,f(x0))处的切线斜率为3,则tanx0的值是(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\sqrt{3}$D.$-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.${∫}_{4}^{6}$$\sqrt{-{x}^{2}+8x-12}$dx=π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)的图象如图所示,则f(x)的极大值点为(  )  
A.1B.2C.1.7D.2.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.按下列要求分配6本不同的书,各有多少种不同的分配方式.
(1)平均分给甲、乙、丙三人,每人2本.
(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本.(用数字回答)

查看答案和解析>>

同步练习册答案