精英家教网 > 高中数学 > 题目详情

(本题满分12分)
如图所示的几何体是由以正三角形为底面的直棱柱被平面所截而得. 的中点.

(1)当时,求平面与平面的夹角的余弦值;
(2)当为何值时,在棱上存在点,使平面

(1)(2)2

解析试题分析:(1)分别取的中点,连接
以直线分别为轴、轴、轴建立如图所示的空间直角坐标系,

,则的坐标分别为
(1,0,1)、(0,,3)、(-1,0,4),
=(-1,,2),=(-2,0,3)
设平面的法向量

,可取         …… 3分
平面的法向量可以取           
           …… 5分
∴平面与平面的夹角的余弦值为.                  ……6分
(2)在(1)的坐标系中,=(-1,,2),=(-2,0,-1).
上,设,则


于是平面的充要条件为

由此解得,    ……10分
即当=2时,在上存在靠近的第一个四等分点,使平面. ……12分
考点:空间向量求解二面角,判定线面垂直
点评:空间向量解决立体几何问题的关键是建立合适的坐标系,找准相关点的坐标

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面ABCD是一直角梯形,,,且PA=AD=DC=AB=1.

(1)证明:平面平面
(2)设AB,PA,BC的中点依次为M、N、T,求证:PB∥平面MNT
(3)求异面直线所成角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题13分)
如图,在四棱锥中,平面,底面是菱形,.分别是的中点.

(1) 求证:
(2) 求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.

(Ⅰ)求证:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)在几何体ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC,F是BC的中点,AB=AC=BE=2,CD=1

(Ⅰ)求证:DC∥平面ABE;
(Ⅱ)求证:AF⊥平面BCDE;
(Ⅲ)求证:平面AFD⊥平面AFE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图所示,四棱锥中,底面为正方形,平面分别为的中点.

(1)求证:
(2)求平面EFG与平面ABCD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

图形P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,Q是PC中点.AC,BD交于O点.

(1)二面角Q-BD-C的大小:
(2)求二面角B-QD-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四面体ABCD中,O、E分别是BD、BC的中点,

(I)求证:平面BCD;
(II)求异面直线AB与CD所成角的余弦值;
(III)求点E到平面ACD的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
如图,在三棱锥S-ABC中,BC⊥平面SAC,AD⊥SC.

(Ⅰ)求证:AD⊥平面SBC;
(Ⅱ)试在SB上找一点E,使得平面ABS⊥平面ADE,并证明你的结论.

查看答案和解析>>

同步练习册答案