精英家教网 > 高中数学 > 题目详情
16.已知等比数列{an}中:a1=1,a7a8=27a${\;}_{9}^{2}$..
(1)求{an}的通项公式;
(2)若bn=-$\frac{1}{lo{g}_{3}{a}_{2n+1}•lo{g}_{3}{a}_{2n+3}}$,求数列{bn}的前n项和Sn

分析 (1)化简a7a8=27a${\;}_{9}^{2}$可得a7=27a10,从而求得$q=\frac{1}{3}$,从而写出{an}的通项公式;
(2)利用对数运算化简可得log3a2n+1=-2n,log3a2n+3=-2n-2,从而利用裂项求和法求和.

解答 解:(1)∵a7a8=27a${\;}_{9}^{2}$,∴a7a8=27a8a10
∴a7=27a10
设{an}的公比为q,则${q^3}=\frac{{{a_{10}}}}{a_7}=\frac{1}{27}$,
故$q=\frac{1}{3}$,
所以{an}的通项公式为an=($\frac{1}{3}$)n-1
(2)log3a2n+1=log3(($\frac{1}{3}$)2n)=-2n,
log3a2n+3=log3(($\frac{1}{3}$)2n+2)=-2n-2,
故bn=-$\frac{1}{lo{g}_{3}{a}_{2n+1}•lo{g}_{3}{a}_{2n+3}}$=-$\frac{1}{4n(n+1)}$=-$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$),
故${S_n}=-\frac{1}{4}[{(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+…+(\frac{1}{n}-\frac{1}{n+1})}]=-\frac{1}{4}(1-\frac{1}{n+1})=-\frac{n}{4n+4}$.

点评 本题考查了数列的性质的判断与应用,同时考查了对数运算及裂项求和法的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知圆C:(x-m+1)2+(y-m)2=1与两坐标轴都有公共点,则实数m的取值范围[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆C1:(x+1)2+y2=25,圆C2:(x-1)2+y2=1,动圆C与圆C1和圆C2均内切.
(Ⅰ)求动圆圆心C的轨迹E的方程;
(Ⅱ)点P(1,t)为轨迹E上点,且点P为第一象限点,过点P作两条直线与轨迹E交于A,B两点,直线PA,PB斜率互为相反数,则直线AB斜率是否为定值,若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知F1,F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右两个焦点,若在双曲线C上存在点P使∠F1PF2=90°,且满足2∠PF1F2=∠PF2F1,那么双曲线C的离心率为(  )
A.$\sqrt{3}$+1B.2C.$\sqrt{3}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆C1:x2+y2+6x-4=0,圆C2:x2+y2+6y-28=0.
(1)求过这两个圆交点的直线方程;
(2)求过这两个圆交点并且圆心在直线x-y-4=0上的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数$f(x)=\left\{{\begin{array}{l}{{{(x-1)}^2},x≥0}\\{|{{e^x}-2}|,x<0}\end{array}}\right.$则f(-1)=2-$\frac{1}{e}$,若方程f(x)=m有两个不同的实数根,则m的取值范围为(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=(x2+ax+b)ex,当b<1时,函数f(x)在(-∞,-2),(1,+∞)上均为增函数,则$\frac{a+b}{a-2}$的取值范围是(  )
A.(-2,$\frac{2}{3}$]B.[-$\frac{1}{3}$,2)C.(-∞,$\frac{2}{3}$]D.[-$\frac{2}{3}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某中学为了解某次竞赛成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本进行统计,请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图解决下列问题:
频率分布表:
组别分组频数频率
第1组[50,60)90.18
第2组[60,70)a
第3组[70,80)200.40
第4组[80,90)0.08
第5组[90,100]2b
合计
(1)写出a,b,x,y的值;
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学参加座谈,求所抽取的2名同学来自同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知全集U=R,集合A={x|x≤-2或x≥3},B={x|x<-1或x>4},那么集合(∁UA)∩B等于(  )
A.{x|-2≤x<4}B.{x|-2<x<3}C.{x|-2<x<-1}D.{x|-2<x<-1或3<x<4}

查看答案和解析>>

同步练习册答案