精英家教网 > 高中数学 > 题目详情
4.已知F1,F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右两个焦点,若在双曲线C上存在点P使∠F1PF2=90°,且满足2∠PF1F2=∠PF2F1,那么双曲线C的离心率为(  )
A.$\sqrt{3}$+1B.2C.$\sqrt{3}$D.$\frac{\sqrt{5}}{2}$

分析 由已知得∠F1PF2=90°,∠PF1F2=30°,∠PF2F1=60°,设|PF2|=x,则|PF1|=$\sqrt{3}x$,|F1F2|=2x,由此能求出双曲线C的离心率.

解答 解如图,∵∠F1PF2=90°,且满足2∠PF1F2=∠PF2F1
∴∠F1PF2=90°,∠PF1F2=30°,∠PF2F1=60°,
设|PF2|=x,则|PF1|=$\sqrt{3}x$,|F1F2|=2x,
∴2a=$\sqrt{3}x-x$,2c=2x,
∴双曲线C的离心率e=$\frac{c}{a}=\frac{2x}{\sqrt{3}x-x}$=$\sqrt{3}+1$.
故选:A

点评 本题考查双曲线的离心率的求法,是中档题,解题时要认真审题,注意双曲线的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|x2-x-2≤0},B={x|x2-1>0},则A∩B=(  )
A.[-2,1)B.(-1,1)C.(1,2]D.(-2,-1)∪(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设A是非空数集,0∉A,1∉A,且满足条件:若x∈A,则$\frac{1}{1-x}$∈A.若2∈A,则集合A中所含元素个数最小的集合A{2,-1,$\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.计算:$\frac{cos10°-2sin20°}{sin10°}$=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=cos(4x-$\frac{π}{3}$)+2cos2(2x),将函数y=f(x)的图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,再将所得函数图象向右平移$\frac{π}{6}$个单位,得到函数y=g(x)的图象,则函数y=g(x)的一个单调递增区间为(  )
A.[-$\frac{π}{3}$,$\frac{π}{6}$]B.[-$\frac{π}{4}$,$\frac{π}{4}$]C.[$\frac{π}{6}$,$\frac{2π}{3}$]D.[$\frac{π}{4}$,$\frac{3π}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$G:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的长轴长为$2\sqrt{2}$,离心率$e=\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求椭圆G的方程;
(Ⅱ)设过椭圆G的上顶点A的直线l与椭圆G的另一个交点为B,与x轴交于点C,线段AB的中点为D,线段AB的垂直平分线分别交x轴、y轴于P、Q两点.问:是否存在直线l使△PDC与△POQ的面积相等(O为坐标原点)?若存在,求出所有满足条件的直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等比数列{an}中:a1=1,a7a8=27a${\;}_{9}^{2}$..
(1)求{an}的通项公式;
(2)若bn=-$\frac{1}{lo{g}_{3}{a}_{2n+1}•lo{g}_{3}{a}_{2n+3}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设θ为第二象限角,若$tan(θ+\frac{π}{3})=\frac{1}{2}$,则sinθ+$\sqrt{3}$cosθ=-$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知(1+ax)(1+x)5的展开式中x3的系数为5,则a=-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案