精英家教网 > 高中数学 > 题目详情
15.根据如图计算定积分:${∫}_{-3}^{3}$(|2x+3|+|2-2x|)dx

分析 被积函数是绝对值函数的常常是将被积函数转化为分段函数,然后利用定积分的定义进行求解即可.

解答 解:令y=|2x+3|+|2-2x|,
则当-3≤x<-$\frac{3}{2}$时,y=-4x-1;当$-\frac{3}{2}$≤x<1,y=5;当1≤x≤3,y=4x+1,
则${∫}_{-3}^{3}$(|2x+3|+|2-2x|)dx
=${∫}_{-3}^{-\frac{3}{2}}$(-4x-1)dx+${∫}_{-\frac{3}{2}}^{1}$5dx+${∫}_{1}^{3}$(4x+1)dx
=(-2x2-x)${|}_{-3}^{-\frac{3}{2}}$+5x${|}_{-\frac{3}{2}}^{1}$+(2x2+1)${|}_{1}^{3}$
=$\frac{81}{2}$.

点评 本题主要考查了定积分,定积分运算是求导的逆运算,同时考查了转化与划归的思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知定义在R上的奇函数f(x),f(x+3)是偶函数,当x∈(0,3)时,f(x)=2x-x2,当x∈(-6,-3)时,求y=f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知圆C:(x-$\sqrt{3}$)2+(y-1)2=4和直线l:x-y-5=0,在C上求两点,使它们与l的距离分别是最近和最远.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知二次函数f(x)=ax2+bx+c(a>0)的图象与x轴有两个不同的公共点,
(1)设a+b=2,当-1≤x≤1时,|f(x)|≤1,求f(x);
(2)当0<x<c时,恒有f(x)>0,且有f(c)=0,
①试求b的取值范围;
②若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为5,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a=$\frac{1}{2}$cos6°-$\frac{\sqrt{3}}{2}$sin6°,b=$\frac{2tan13°}{1+ta{n}^{2}13°}$,c=$\frac{sin50°}{2cos25°}$,比较a,b,c的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知f(x)=$\left\{\begin{array}{l}{(3-a)x+2,x≤2}\\{{a}^{{2x}^{2}-9x+11},x>2}\end{array}\right.$(a>0,a≠1),数列{an}满足an=f(n),且{an}是递增数列,则a的取值范围为[2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,a,b,c分别是内角A,B,C所对的边,b2=c(b+2c),若a=$\sqrt{6}$,cosA=$\frac{3}{4}$,则△ABC的面积是$\frac{3\sqrt{7}}{4}$,sinB=$\frac{\sqrt{14}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.非空集合A={x|1≤x≤a},B={y|y=x+1,x∈A},C={y|y=x2,x∈A},若B∩C≠∅,则a的取值范围为a≥$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F2,M(x0,y0)(x0>0,y0>0)是双曲线C上的点,N(-x0,-y0),连接MF2并延长MF2交双曲线C于P,连接NF2,PN,若△NF2P是以∠NF2P为顶角的等腰直角三角形,则双曲线C的渐近线方程为(  )
A.y=±2xB.y=±4xC.y=±$\frac{\sqrt{6}}{2}$xD.y=±$\frac{\sqrt{10}}{2}$x

查看答案和解析>>

同步练习册答案