精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax3+cx+d(a≠0)是R上的奇函数,当x=1时f(x)取得极值-2.
(1)求f(x)的单调区间和极大值;
(2)证明对任意x1,x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立.

解:(1)由奇函数的定义,应有f(-x)=-f(x),x∈R
即-ax3-cx+d=-ax3-cx-d∴d=0
因此,f(x)=ax3+cxf'(x)=3ax2+c
由条件f(1)=-2为f(x)的极值,必有f'(1)=0,故
解得a=1,c=-3
因此,f(x)=x3-3x,f'(x)=3x2-3=3(x+1)(x-1)f'(-1)=f'(1)=0
当x∈(-∞,-1)时,f'(x)>0,故f(x)在单调区间(-∞,-1)上是增函数
当x∈(-1,1)时,f'(x)<0,故f(x)在单调区间(-1,1)上是减函数
当x∈(1,+∞)时,f'(x)>0,故f(x)在单调区间(1,+∞)上是增函数
所以,f(x)在x=-1处取得极大值,极大值为f(-1)=2
(2)由(1)知,f(x)=x3-3x(x∈[-1,1])是减函数,
且f(x)在[-1,1]上的最大值M=f(-1)=2,f(x)在[-1,1]上的最小值m=f(1)=-2
所以,对任意的x1,x2∈(-1,1),恒有|f(x1)-f(x2)|<M-m=2-(-2)=4
分析:(1)由奇函数的定义利用待定系数法求得d,再由x=1时f(x)取得极值-2.解得a,c从而确定函数,再利用导数求单调区间和极大值.
(2)由(1)知,f(x)=x3-3x(x∈[-1,1])是减函数,从而确定|f(x1)-f(x2)|最小值,证明即可.
点评:本小题主要考查函数的单调性及奇偶性,考查运用导数研究函数单调性及极值等基础知识,考查综合分析和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案